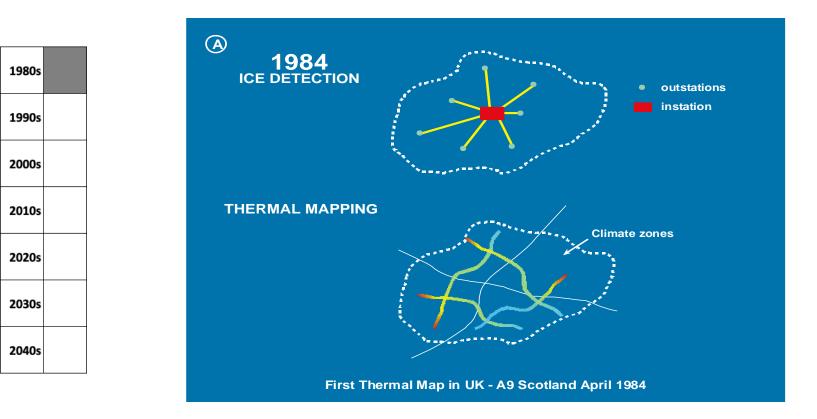


Building climate resilience in the winter road maintenance sector. *Change is coming...*

> Lee Chapman Professor of Climate Resilience & Met Office Joint Chair University of Birmingham, UK I.chapman@bham.ac.uk

A little about me...

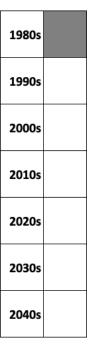
- Interested in the impact of weather and climate on the built environment
 - Urban Climate Impacts
 - Infrastructure Meteorology
 - Railway Buckling
 - Leaves on the line
 - Winter Road Maintenance
 - Climate Change
- Hold a joint chair with the UK Met Office
- Been at UoB since 1998!
 - PhD in Winter Road Maintenance
 - Run two university start-ups
 - Involved in all four UK Climate Change Risk Assessments



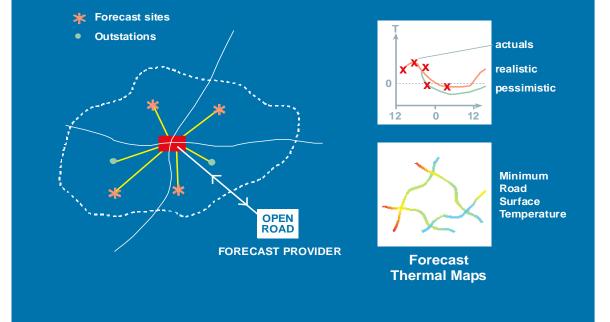
The importance of winter road maintenance

- Estimated UK spend is £1500m+ in a normal winter
- Salt corrodes £200m+ of structures each year
- Disruption in Winter 2010/11 was estimated to cost the economy over £600m per day.
- Cost:Benefit is estimated at 1:9
- Where would we be without road weather forecasts?

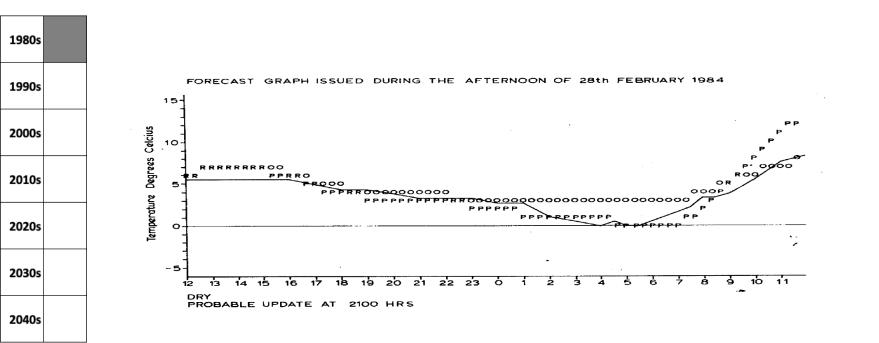
40 years ago



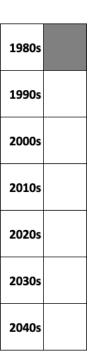
40 years ago



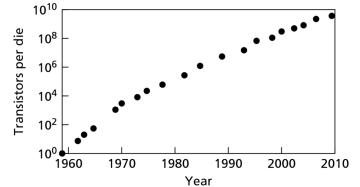
"Road surface temperatures are expected to fall below zero at 2 a.m. and ice is expected to form on most of the roads in the region."



B 1986 ICE PREDICTION


UNIVERSITY^{OF} BIRMINGHAM

Probabilistic Forecasting (1980s style)



Deterministic Forecasts

- It was the best we could do
 - 30 mins to run a forecast for one site


- Despite increasing computer power, road weather forecasts have remained deterministic in nature but...
 - ...large advances in mesoscale models which drive the downscaling

20 years ago

- Increasing computer power was instead been used by the winter road maintenance community in other ways:
 - Salting Route Optimisation
 - Decision Support Systems } Selective Salting
 - Route Based Forecasting

Route-based forecasting

- This is where I entered the fray...
- Invented route based forecasting for my PhD.
- Set up a spin-out company

>enticetechnology

- We ran that for 4 years before selling to the then largest private weather company in the world
- Rival route-based forecasting products now mainstream
- Why did the idea prove popular?
- The savings were tantalising -•
 - Selective Salting was now a real possibility but...

US	0070)891	151	32

()	United States Patent Chapman et al.	(10) Patent No.: US 7,089,115 B2 (45) Date of Patent: Aug. 8, 2006
(54)	ROAD WEATHER PREDICTION SYSTEM AND METHOD	6,085,152 A * 7/2000 Doerfel 702/3 6,990,410 B1* 1/2006 Boright et al
(75)	Inventors: Lee Chapman, Birmingham (GB);	FOREIGN PATENT DOCUMENTS
	John Edward Thornes, Worcestersh (GB)	ire JP 09114371 5/1997 JP 11064536 3/1999 JP 2001051069 2/2001
(73)	Assignee: Entice Technology Limited, Birmingham (GB)	OTHER PUBLICATIONS
(*)	Notice: Subject to any disclaimer, the term of patent is extended or adjusted under U.S.C. 154(b) by 138 days.	
(21)	Appl. No.: 10/485,430	· · · · ·
(22)	PCT Filed: Jul. 31, 2002	Primary Examiner—Donald McElheny, Jr. (74) Attorney, Agent, or Firm—Wells St. John P.S.
(86)	PCT No.: PCT/GB02/03521	(57) ABSTRACT
	§ 371 (c)(1), (2), (4) Date: Aug. 16, 2004	In one aspect, the present invention relates to a method of determining the sky-view factor at a location. The method
(87)	PCT Pub. No.: WO03/012485	comprises the steps of receiving data from at least one global
	PCT Pub. Date: Feb. 13, 2003	positioning satellite at the location, and comparing the data so obtained with a mathematical function. The function is
(65)	Prior Publication Data	derived from corresponding data obtained from reference locations at which the sky view factor is known, whereby to
	US 2005/0010365 A1 Jan. 13, 2005	arrive at an approximation of the sky view factor at said
(30)	Foreign Application Priority Data	location. In another aspect, the invention relates to a method for predicting the variation in temperatures over time at
Au	g. 2, 2001 (GB) 011885	
(51)	Int. Cl. G01W 1/00 (2006.01)	for the survey route containing location specific geographi- cal parameters, obtaining actual and forecast meteorological
(52)		2/3 data and separately predicting the temperature at each loca-
(58)	Field of Classification Search	
	See application file for complete search history.	4.5 meteorological data and the geographical parameters for the location whose temperature is being predicted. The inven-
(56)	References Cited	tion also discloses systems which relate to the above meth-
	U.S. PATENT DOCUMENTS	ods.

5.675.081 A 10/1997 Solheim et al. 73/170.28

21 Claims, 12 Drawing Sheets

1980s 1990s 2000s 2010s 2020s 2030s 2040s

<u>Now</u>

	•	Despite all the technologies, selective salting is still not happening
1980s	•	
1990s	·	In an age of litigation, engineers are wary about relying on forecasts at this level of resolution
2000s		
2010s		
2020s	•	Observations remain key
2030s		Obscivations remain Rey

2040s

Internet of Things

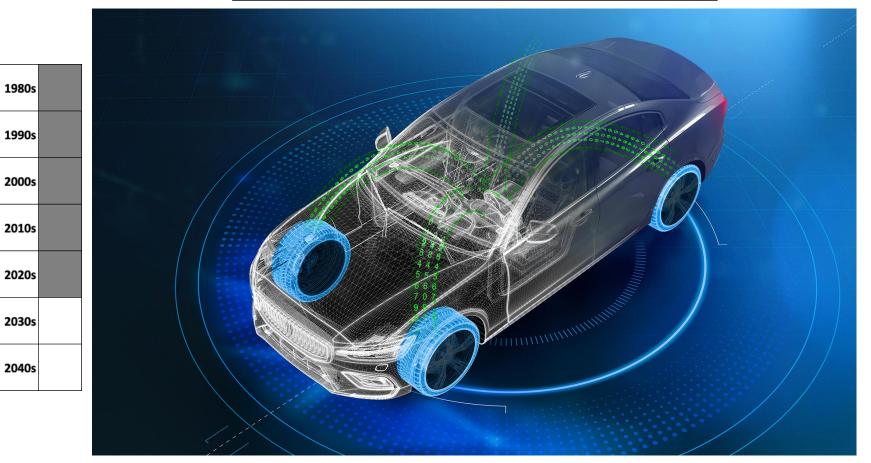
- Low-cost option for RST measurement that has the potential to be deployed at the same resolution as a route-based forecast
 - Based on the Internet of Things
 - Game Changing in network densification and confidence building

UNIVERSITY^{OF} BIRMINGHAM

Wintersense

• My second winter road maintenance spin-out company.

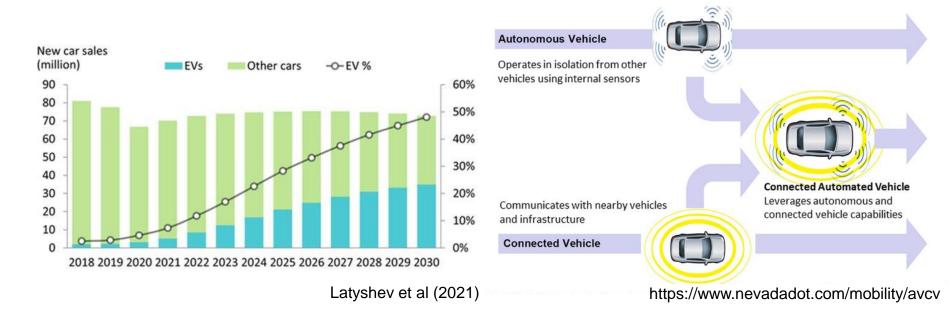
- Sold in 2019 to Campbell Scientific Ltd who now market the product worldwide
- The market has finally caught up and rival products now exist from many providers



Many other sophisticated sensing options...

Data from connected vehicles...

The rise of AI



- All these new approaches are producing data at an unprecedented scale
- Not all the data is well structured
 - Lot of noise
- AI is unlocking the potential of this mass data collection
 - Nowcasting on the edge (IoT sensors)
 - Object recognition on sophisticated sensors
 - Making sense of Big Data collected from connected vehicles
- AI is already more than capable of replacing human weather forecasters...
- Has the pace of change ever been faster in the winter road maintenance sector?
- But it isn't the only thing changing...

The climate is changing...

...and so are our vehicles

"As of the end of April 2024, there are now 1,100,000 fully electric cars on UK roads and a further 655,000 plug-in hybrids." <u>https://www.zap-map.com/</u>

Autonomous Vehicles

- ECVs are just the precursor to AVs
- Not a case of if, but when...
 - Change will be quick like flipping a switch

- A lack of data will no longer be a problem
 - Every vehicle on the road will be a data goldmine
- But what are the other implications?

What does this mean?

- The climate will undoubtedly be more variable and extreme
- However, the capabilities of vehicles are markedly different to today
- Taken together the management of the risk is going to need to evolve...

What will a future winter road maintenance service look like?

Are electric and autonomous vehicles more or less resilient to the weather than their fossil fuel predeccesors?

Weather Risks on ECAV's

	Electric / Connected Vehicle Risks	Additional Issues for AV	Considerations / Mitigations *
High Temperatures	 Reduced range due to cabin cooling Melting roads will impact roll resistance also reducing range Increased cooling of components requiring further drain (overheating risks) Battery degradation in heat, reducing their lifespan Increased demand on energy grid for cooling may impact supply. 		 Battery thermal management systems may help, but will also require increased power. Parking / charging in covered areas during extreme weather, Preconditioning to cool the vehicle while it's plugged in Ecological driving to increase range in adverse conditions.
Rain / Fog / Visibility	Communication challenges in poor weather	 Reduced sensor performance (especially LIDAR) Extreme rainfall (e.g. Freezing Rainfall) may be beyond training envelopes. Hail can damage on-board vehicle sensors 	
Flooding	 Water ingress into electric systems. Charging infrastructure and substations susceptible to flooding. 	 Shallow floodwater can obscure lane markings, deep floodwater can hide hazards. 	 Lack of an air-intake potentially increases wading depth, therefore increasing resilience
Wind & Storms	 Impact on aerodynamics and energy consumption Gusts may impact vehicle stability Charging infrastructure susceptible to flying debris Storms may impact electricity supplies Low winds will impact on renewable generation 		

Winter Risks for ECAV's

	Electric / Connected Vehicle Risks	Additional Issues for AV	Considerations / Mitigations *
Low Temperatures	 Reduced battery performance and range (up to 36%). Compounded by the increased need for cabin heating. Batteries take longer to charge Heavier vehicles can cause more damage to the road in freeze-thaw cycles (potholes) Increased demand on energy grid for heating may impac supply. 	t	 Preconditioning to warm the vehicle while it's plugged in Ecological driving to increase range in adverse conditions.
Snow and Ice	 Accretion of snow on wheel arches may reduce efficiency and range Frozen charging infrastructure. Accretion of snow and ice may impeded energy generation and supply. Communication challenges in poor weather 	 Snow obscure / obstruct sensors Snow on road infrastructure can impact navigation (lane markings and signs) Interactions with winter maintenance fleet may be challenging. Rapidly changing weather conditions can be challenging for AV algorithms 	 Trends to move to AWD by manufacturers will increase resilience Heavier vehicles with a lower centre of gravity will increase traction Better engine torque Reduced risk of skidding from regenerative breaking Simpler mechanics promote resilience. Data from sensors will facilitate improved real-time decision making

Implications for winter road maintenance delivery?

• Does the risk actually decrease?

- Heavy vehicles with a lower centre of gravity
- Improved torque and regenerative braking
- Driver assistance systems
- All reduce skid risk and improve safety
- Are we confident to move to a white road policy if this is case?
- Greater autonomy does lead to problems though:
 - Obscuring of lane markings and signage (i.e. white road!)
 - This can be fixed with quantum sensing / positioning
- Reduced ranges in cold weather will lead to more stranded vehicles
- Does a duty of care extend to charging infrastructure?

1980s

Electric & Connected Gritters

- Connected Gritters have long been used since the advent of GPS
 - Tracking & Logging
 - Dynamic Routing
- Electric Gritters are also starting to enter service:
 - ECON E-QCB
 - Range: 170 miles

- Range suitable for average use
 - Operating in non-optimal conditions (i.e. cold)
 - Resilience issues for extreme events

Implications for winter road maintenance support systems?

1980s	 Data from connected vehicles already underpinning significant progress here: 		
1990s	 Real time friction measurements Communications between vehicles, re-routing algorithms etails 		
2000s	– Nira Dynamics		
2010s	 A good example of how Artificial Intelligence has the capability to make sense of noisy data from 		
2020s	– Connected vehicles		
2030s	– Dense distributed sensor networks (IoT) – Real time treatment updates		
2040s	 Pattern / object recognition from sophisticated sensors 		

The elephant in the room

- Are we collecting / developing middling technologies that are based on what we have needed for the last 40 years and not the next 40?
 - Nice tech, but how long is the shelf life?

1980s

1990s

2000s

2010s

2020s

2030s

2040s

• If we decide we do still need a winter service, how different does it need to look?

Autonomous Gritters

- It isn't data from autonomous cars that will be transformative, it will be autonomous gritters.
- An autonomous gritter short circuits the entire system:
 - Collects it's own on-board road weather data
 - Takes real-time actions based on what it is sensing
 - No weather forecast required!
 - No decision maker required!
- The only reason weather forecasts are issued at midday is due to working time directives and forward planning
- A fleet of autonomous gritters can patrol 24/7 with no issues.

It's already happening (at least on sidewalks)...

https://www.swaprobotics.com/snow-plowing

A new paradigm

- Very little of our current RWIS is needed
- We will have gone full circle back to ice detection of the early 1980's
- Research Targets:

1980s

1990s

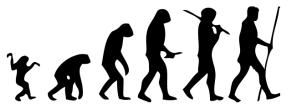
2000s

2010s

2020s

2030s

2040s


- Still need to improve our mobile measurement capabilities
 - Low latency temperature / condition sensing
 - Residual Salt detection
- A network of in-situ sensors still needed:
 - Spot check /calibrate mobile sensors in real time

BIRMINGHAM

Early warning system to deploy the fleet

Conclusions

- Winter service will need to evolve to both the changing climate and the changing vehicle fleet
- The latest fleet of ECV's has the potential to reduce the burden of winter maintenance
 - Increased safety
 - White Roads are perhaps a step too far...

- We are embarking on a period of rapid change in the sector
 - The sector has the chance to show leadership in embracing the benefits, even if it does mean ripping up the rule book.
 - Counter-intuitive to think tomorrows technologies will take us back to approaches from 40 years ago!