

Be part of the conversation! Follow APSE on Twitter and LinkedIn

@apseevents
@apsenews

@APSE - Association for Public Service Excellence

Net Zero and Leisure Energy Audits

By Alan Barber

APSE Energy Associate & Director of Salvis

Emissions

Leisure Centre Energy

- Scope 3 emissions
- Often the most expensive and carbon intensive buildings in estate
- Design is critical to ensure correct environmental conditions are achieved

How to get your building estate to be zero carbon

- Reduce energy usage and optimise building performance (i.e. energy efficiency)
- Generate renewable local power
- Low carbon heating
- Offset

Case Study – Spectrum Leisure Centre, Guildford

- Guildford Spectrum is a 5 storey Leisure Centre and Sports Complex that houses swimming pools, ice rink, sports halls, gym, bowling hall, restaurants & cafes, and various changing rooms and facilities.
- Built in 1993
- 3600kW boilers and 486kW CHP
- 4-pipe ASHP/chiller that provides simultaneous heating and cooling

Condition Based Energy Audit

Replace equipment based on age and condition

Combined Heat and Power

- Historically a low carbon technology and cost effective
- Unlikely to be a low carbon solution nor cost effective in the future

Low Carbon Heating

- Heat Pumps
- Considerations for a low temperature system
- A 4-pipe multifunctional chiller is a heat pump that simultaneously provides heating and cooling. This works by using the heat absorbed from the cooling system to be utilised within the heating system, rather than being rejected to atmosphere. The difference between the heating and cooling output is made up by absorbing/rejecting heat from the atmosphere. This leads to much higher COPs (4-8) compared to traditional chillers (2-4)

Electrical Capacity

- Critical to consider at an early stage
- Can be very expensive to upgrade the network

Solar Photovoltaic and Solar Thermal

246kWp Solar Canopy

Spec. Annual Yield	1,053.40 kWh/kWp	
Performance Ratio (PR)	91.06 %	
Yield Reduction due to Shading	1.6 %/Year	
PV Generator Energy (AC grid)	259,434 kWh/Year	
Own Consumption	259,434 kWh/Year	
Down-regulation at Feed-in Point	0 kWh/Year	
Grid Feed-in	0 kWh/Year	
Own Power Consumption	100.0 %	
CO ₂ Emissions avoided	121,913 kg/year	

Solar Photovoltaic Energy Generation

Building Fabric

- Reducing heat loads can reduce capital cost of replacement heating system
- No thermal modelling carried out
- Can be very expensive

Delivery Programme

- CHP to only run when there is sufficient thermal demand 2024
- Pool Shell & Tube Heat Exchangers Replacement 2024
- Solar PV canopy 2024
- AHU and Extract Fan Replacement Works 2024 2027
- LED installations 2024
- LPHW main distribution and other heat emitters replacement 2028
- Installation of 6 no new 4-pipe Multifunctional Chillers/ASHP 2029
- Turn off CHP unit 2029
- Replacing gas burning cooking appliances Whenever kitchens are refurbished prior to 2030

Costs

Main Large AHU	Other	4-Pipe	Glycol ChW	General	Low	High	Heat	LED Lighting	Solar PV	Equipment	Other	Total
	AHU	Multifunctional	System to Ice	ChW	Temperature	Temperature	Emitters					
		Chillers	Rink AHU	System	LPHW	LPHW System &						
					System	DHW						
£947,000	£410,000	£1,174,000	£33,000	£193,000	£580,000	£242,000	£450,000	£27,900	£223,000	£158,700	£83,200	£4,521,800

Carbon Trajectory

Energy Costs

Hard to Reduce Emissions and Offsetting of Carbon

590 tCO₂e of unavoidable emissions by 2030 that would need to offset the electricity consumption in order to be net zero carbon

Public Sector Decarbonisation Scheme (PSDS Phase 4)

- Technical application
- Pre and post peak heat loss and system sizing
- Like for like costs
- Age of plant
- Detailed cost breakdown
- Electrical capacity
- £510 tCO₂LT
- Minimum 12% contribution

Prioritising projects and feasibility studies

- Analysing existing and proposed building loads
- Comparing technologies
- Maintenance requirements and cost
- Carbon savings
- Cost savings
- Funding opportunities
- Payback and ROI

Carrying Out Energy Audits

- Prepare a report that can be submitted with the PSDS application
- Include energy saving calculations
- Include a breakdown of capital cost

Contact details

Alan Barber, APSE Energy Associate

Email: alan.barber@salvisgroup.co.uk

Association for Public Service Excellence

3rd floor, Trafford House, Chester Road, Old Trafford, Manchester M32 0RS. **telephone:** 0161 772 1810 **web:**www.apse.org.uk