

APSE Big Energy Summit 2017 Electric vehicles and the Energy System

Keith Budden

Head of Business Development <u>keith.budden@cenex.co.uk</u> www.Cenex.co.uk

APSE Big Energy Summit 2017 Cenex, Centre of Excellence for Low Carbon and Fuel Cell Technologies

- Independent, not for profit, low carbon vehicle experts
- Established with support from UK Government and Automotive Industry
- 10 years experience in UK and EU collaborate research projects
- Experience in Electric, Gas, Biomethane and Hydrogen vehicles
- Expertise in vehicle trials and demonstrators using real world data for carbon and cost analysis
- Three years V2G experience
- Low carbon vehicle fuelling and charging infrastructure expertise
- Manage Europe's premier Low Carbon Vehicle Technology event LCV <u>www.cenex-LCV.co.uk</u>

APSE Big Energy Summit 2017 cenex **Cenex Clients** • 10 years of excellence • ZERC SCOTLAND amey **Scottish Enterprise** UK TRADE& INVESTMENT drive Innovate UK west midlands THE HEART OF UK AUTOMOTIVE شركة وادي الرياض riyadh valley co Technology Strategy Board Nottingham 27.22 **City Council Royal Mail** technologies **Plugged-In** Midlands institute Environment BOSCH Agency -ROVER er Knowledge Innovation JAGUAR automotive Climate-KIC **⊂council** ▼UK CATAP UKEVSE ADVANCED PROPULSION Transport System CENTRE UK LCV Event 2

- APSE Big Energy Summit 2017 Low Carbon Vehicle Event

www.cenex-lcv.co.uk

Technology Showcase

Ride & Drive

- **3,137** visitors
- 226 exhibiting organisations
- 1, 180 organisations attending
- 122 vehicles

Extensive Seminar Programme

APSE Big Energy Summit 2017 Transport emissions up 36% since 1990 Road Manufacturing and construction Domestic Transport navigation Energy industries Int'i maritime Industrial Domestic aviation processes Residential and Int'l aviation commerical Agricultural Rail Other Other

Greenhouse gas emissions in other sectors decreased 15% between 1990 and 2007 but emissions from transport increased 36% during the same period. This increase has happened despite improved vehicle efficiency because the amount of personal and freight transport has increased.

Demand for goods will increase by approx. 30% between 2010 and 2030

• 10 years of excellence

APSE Big Energy Summit 2017 Air quality - health cost to the EU 88 billion Euro

EU fines?

CENEX

2

APSE Big Energy Summit 2017 Electric cars and consumer demand

Tesla Model 3 373,000 pre-orders with \$1,000/£1,000 deposit paid

APSE Big Energy Summit 2017

Cenex

So what are the alternatives to Petrol and Diesel?

- Electric
- Plug in Hybrid
- LPG
- CNG
- LNG
- Biomethane
- Hydrogen
- Liquid Air?

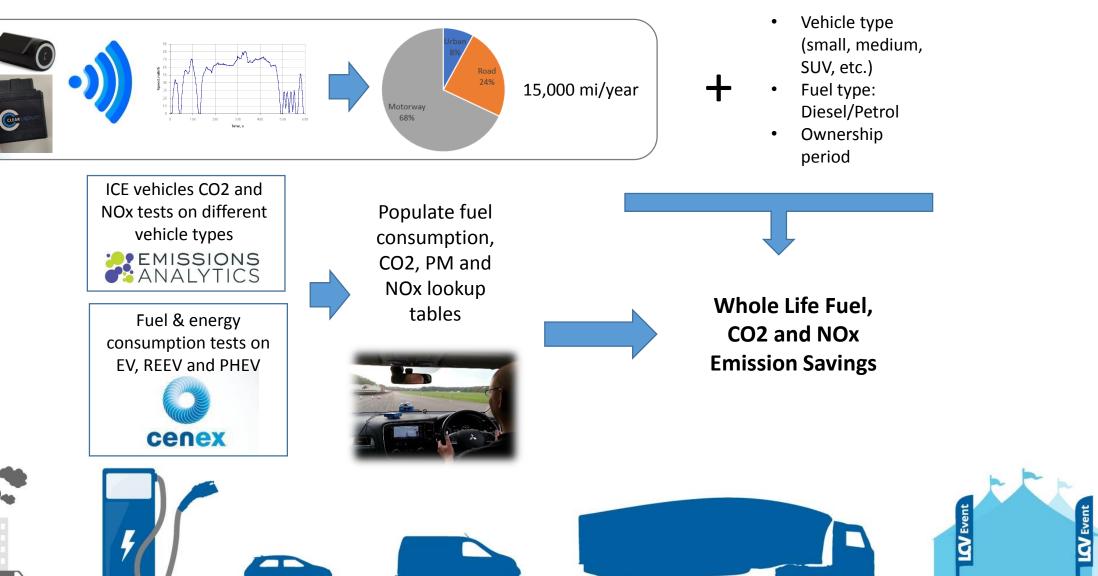
APSE Big Energy Summit 2017

Low cost data for better decision making

Purpose: "CLEAR Capture" stands for Cost-effective Low Emissions Analysis from Realworld Data Capture. This analysis is more accurate as it directly uses your real-world operational data, not estimates of performance, to calculate your whole life costs, operational performance and carbon savings comparisons of switching from a conventional vehicle to an ultra-low emission vehicle (ULEV).

This analysis includes:

- Plug-in device deployment
- Data collection
- Data analysis
- Analysis reporting
- 30 minute explanation call


What will I know? You will fully understand if there is an economic (total cost of ownership) or environmental business case (savings of NOx and CO2) to swap your conventional vehicles to a low emission vehicle, and know the technology types that offer the best savings in your bespoke fleet operational profile.

- APSE Big Energy Summit 2017

Fuel Consumption and Emissions Calculation

CLEAR capture

• 10 years of excellence •

APSE Big Energy Summit 2017

CLEAR - Reporting

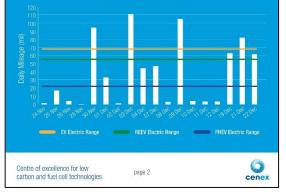
CLEAR CAPTURE Operational Analysis

This is your Driving Habit Distribution based on speed and acceleration statistical patterns captured through your plug-in device. Your plug-in device was deployed for a total of 28 days.

Comparator Vehicle Make & Model	Mercedes C300 (Diesel)
Average daily mileage Days per week usage	53 miles 4.6 days (out of 7 days)	
Extrapolated annual mileage Average journeys part day Average journey mileage Average day driving time Average journey driving time	12,623 miles 3.5 journeys 15.2 miles 1 hour and 11 mins 20 mins	
		a REEV: % .5 kWh

Total Cost of Ownership Study Over a 5 Year Period

	Mercedes C300 (Diesel)	Electric Vehicle (EV) ⁸	Range Extended Electric Vehicle (REEV) ⁸	Plug-in Hybrid Electric Vehicle (PHEV) ⁸
Purchase cost (£) 1	£30,221	£24,479	£30,771	£34,166
Plug in grant discount (£)?		£4,500	£4,500	£2,500
Fuel cost (£) ^s	£5,535	£2,731	£4,789	28,797
Road tax (£)*	£650			
Maintenance cost (£) ^e	£3,603	£1,355	£2,132	£3,322
Resale value (£) ^s	£7,650	£2,854	£6,141	£8,652
Non-EV additional charge (£) ⁶				
Total cost of ownership (\mathfrak{L})	£32,359	£21,211	£27,050	£35,132
Total cost per mile (ppm)	51.3	33.6	42.9	55.7
Whole life cost savings (£)		£11,147	£5,308	-£2,773


Total Cost of Ownership of ownership, proves the strong economic advantage of an Over a 5 Year Period Fuel 🗾 Depreciation 📕 Maintenance 📕 Road tax 0 Centre of excellence for low page 3 carbon and fuel cell technologies cenex

CLEAR Capture

Ultra Low Emission Vehicle Range Study

6 days out of the 18 analysed showed a used battery State of Charge (SoC) of more than 80%, assuming the diesel vehicle was replaced by a pure electric one (EV). This means that 33% of the days the vehicle would need charging during the day, approximately a 20% SoC top-up charge. Using a fast charger (6.6 kW) this would take 40 mins, while a slow charger (3.3 kW) would take 1 hour 30 mins.

Daily Distance Pattern

Lifetime Emissions Study Over a 5 Year Period Air Quality Emissions Talipipo Well-to-whee 📕 Nitrogen Decides (NDs) 🛛 📕 Particulate Matter (PM)

CLEAR capture

Emissions analysis supported by REALSHORS

cene

• 10 years of excellence •

	ncluding VAD. This grant is capped at £4,500 for EVs and REEVs and at £2,500 for PHEV conducted by Cenex AULTYX and Emissions ApplyTos popyentional venders.
	conducted by Sense 4.115%) and Emissions Analytics increasing endered
4. Vehicle tax according to the UK Government rates, which are b	
	ased on fuel type and CO2 emissions.
5. Maintonance cest and rosale value calculated using the Rect 1	Vowe Car Reming Costs Calculator.
8. Non EV additional charge comprises of all the costs not assoc	ated with an ULEX, e.g. London Congestion Charge, tree Ex parking, etc.
7. All costs exclude W/T.	
6. EV, REEV and PHEV models based on Niasan Loal (24 KW) bal	tery), BMW iS REcard Misubiah Gullancer PHEV respectively
 lotal cost of contentlip model excludes any changing infrastrul 	thure cost.
10. Analysis assumes all ULEVs start the day with a full bettery of	harge and they are not recharged during the day.
11. Emissions calculated using the UK Boverrment fact emission	lactors (CO2) and test data from Emission Analytics (FM and NDs).
tre of excellence for low	

- APSE Big Energy Summit 2017 Battery electric vans

Whole Life Cost Example

Life time cost

Whole life cost savings

	Nissan NV200 1.5dCi Acenta (Diesel)	Nissan e-NV200 Acenta (Electric)		
Vehicle	E15,030	E22,088		
Plug-in van grant discount		£5,301		
Fuel costs	E5,449	E2.103		
Road tax	E700	EO		
Maintenance costs	E2,114	£1,416		
Resale value	£3,096	E4,622		
Life time cost	E20,198	£15,684		
Cost per mile	33.7p	26.1p		
Whole life cost savings		£4,514		
If used in the London Congestion Zone (5 days/week)				

£33,323

£15,684

£17,639

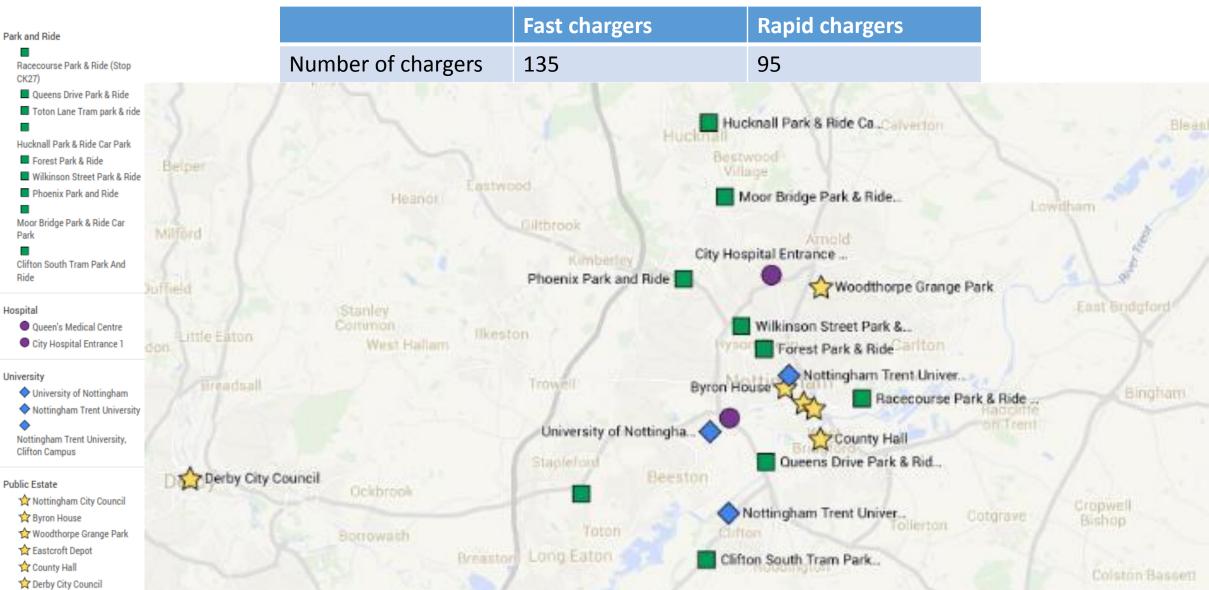
Vehicle: 2.2t Small panel van

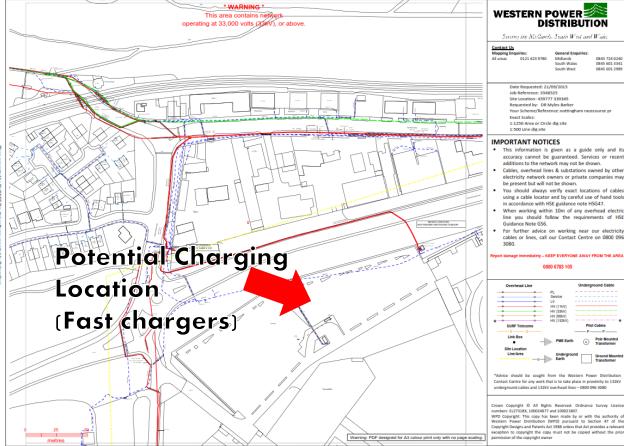
Annual mileage: 12,000 miles (48 miles per day)

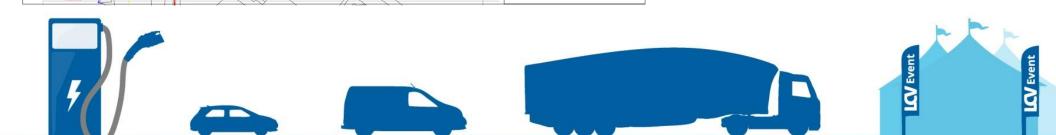
> Ownership period: 5 years

Cost saving: £4,514 rising to £17,639 if used daily in the London Congestion Charging Zone

The example shows the economic case for electric vehicles is strong. The plug-in van grant, lower fuel cost, zero road tax, lower maintenance costs and stronger residual value all work together to offer substantial whole life cost savings. When regional incentives, such as free entry into the London Congestion Charging Zone are included the whole life savings available become comparable to the purchase cost of the vehicle!

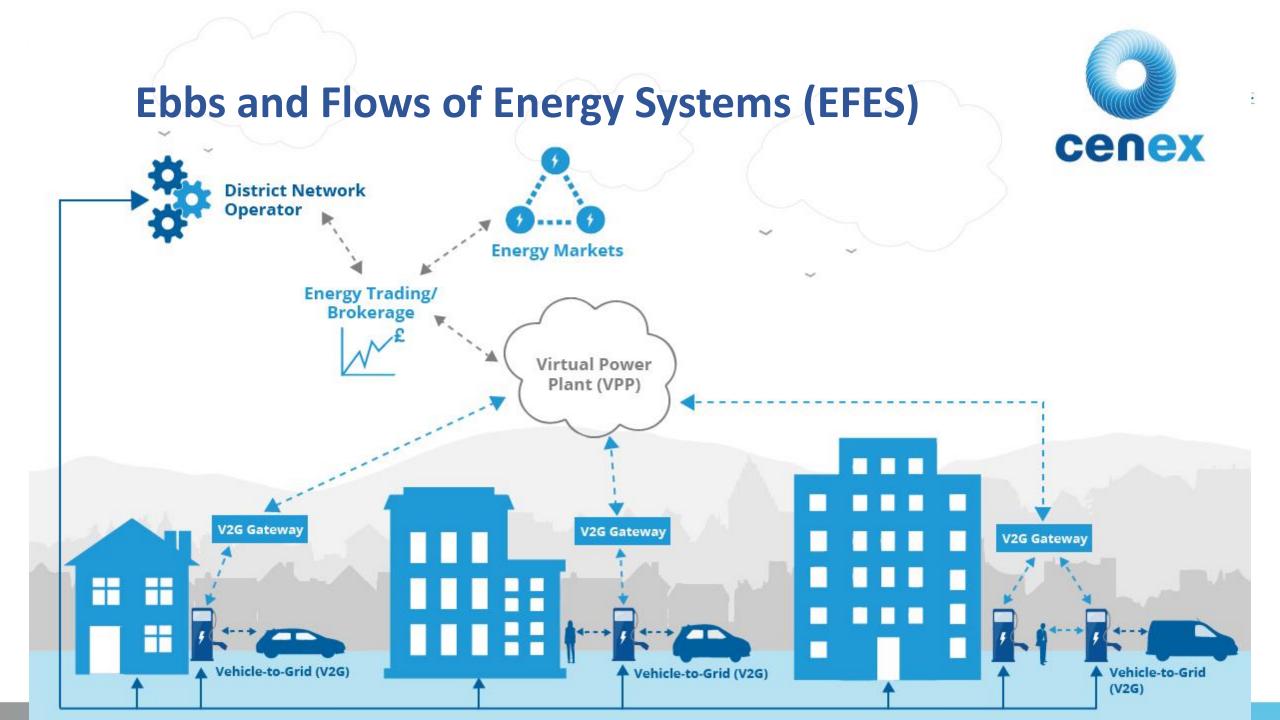





APSE Big Energy Summit 2017 Charging infrastructure - Locations

- APSE Big Energy Summit 2017 Charging infrastructure – Power Supply

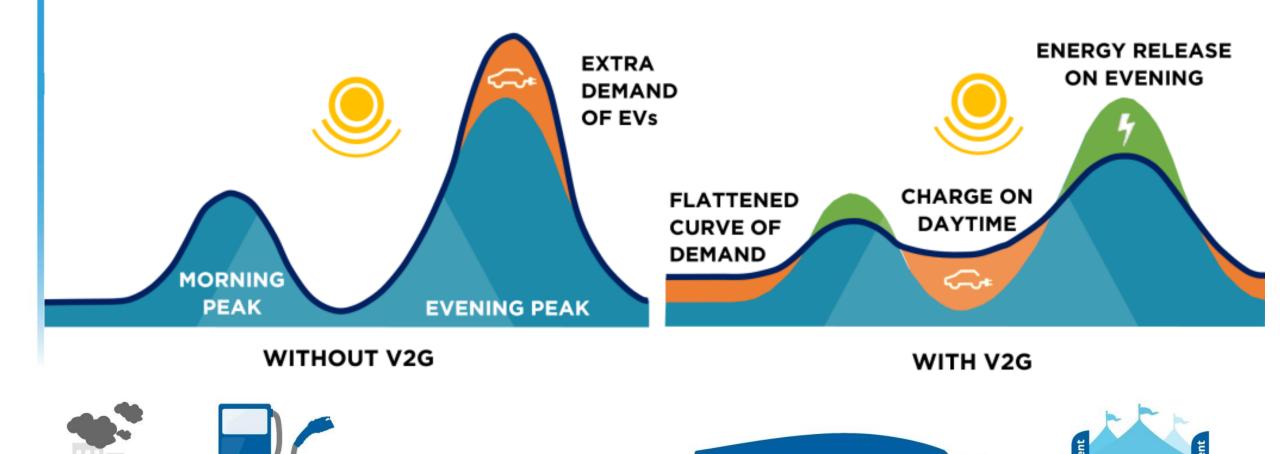
- APSE Big Energy Summit 2017 Electric Vehicle Overview


Constraints

- Electric vehicles (EV) projected to contribute up to 60% of total new car sales by 2030.
- By 2035 EV charging could represent up to a 20GW increase in peak demand.

Opportunities

- Assuming ~16.2kWh per vehicle is available for grid support, this represents ~11.3GWh energy storage capacity by 2020.
- But what does this mean and how does it work?

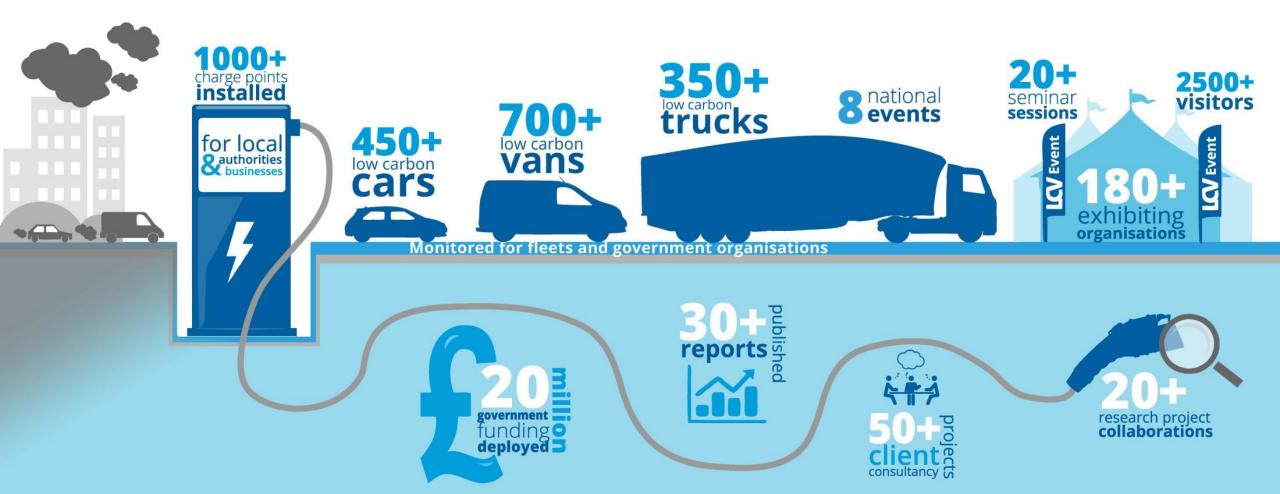


Innovation – demand side management and Vehicle 2 Grid

- APSE Big Energy Summit 2017

Cenex installed the UK's first installed V2G unit at Aston University. Storing cheap night time electricity from on site CHP scheme run by Engie. The houseboat increased its energy independence or, zero Emission energy autonomy (from 34 to 65% with V2G)

APSE Big Energy Summit 2017 Robin Hood - Integrated multi model E-mobility and Green Energy



Keith Budden Head of business development <u>Keith.budden@Cenex.co.uk</u> 07557880959

Thank you

