

BLUEPOWER – EV & HFCEV

Simon Hyde – CEO

BLUEPOWER

- Government Targets
- Duty Cycles / Ranges
- Operational Requirements
- Charging Infrastructure
- Resources Available
- Total Cost of Investment
- Future Proofing

CONSIDERATIONS

HYDROGEN INTRODUCTION

SIGNIFICANCE OF HYDROGEN TODAY

Chemical industry

- Used as a source element for synthesis of ammonia (fertilisers), methanol, and many others.
- Metalworking
 - Mainly used to create metal alloys.
- Refineries
 - Used to process crude oil into refined fuels. (Removal of sulphur and other contaminates).
 - Separation of oxygen from Iron ore. (cleaner than traditional blast furnace).
- Industry
 - Glass production (used as inserting protective gas, cleaning, etching).
- Electrical generation
 - Generator cooling, corrosion preventative in power plant pipelines.

(FAUN @ ZOELLER

BLUEPOWER

BURN OFF TEST

🜔 FAUN 🍭 ZOELLER

TOYOTA BULLET TEST HYDROGEN TANK

HANDLING HYDROGEN

• TOYOTA CRASH TEST HYDROGEN TANK

BLUEPOWER

THE COLOURS OF HYDROGEN

GREEN HYDROGEN

- Generated by water electrolysis.
- The electricity for the electrolyser used is only from renewable sources.
- The hydrogen generation is CO₂ free as the applied energy during electrolysis is derived from 100% renewable sources.

GREY HYDROGEN

- Made using fossil fuels like oil, coal, natural gas.
- For steam reforming it is usually natural gas.
- CO₂ is exhausted into the atmosphere causing global warming effect.
- With every ton of hydrogen produced roughly 10 tons of CO₂ is emitted.

BLUE HYDROGEN

- Is produced in the same way as Grey Hydrogen.
- However the CO₂ emission is separated and stored using CCS (Carbon Capture and Storage)
- The generated CO₂ is not accumulated in the atmosphere and the hydrogen generation is CO₂ neutral in balance.

TURQUOISE HYDROGEN

- Hydrogen is generated by thermal decomposition of methane (methane-pyrolysis)
- Instead of CO₂ the byproduct is solid Carbon.
- The CO₂ neutrality of the process requires renewable sources for the supply of the high temperature reactor.
- Permanent storage is required for the generated carbon.

BLUEPOWER

HYDROGEN GENERATION

🤇 FAUN 🇶 ZOELLER

RENEWABLE ENERGY PATHWAYS OF HYDROGEN

TRANSPORT OF HYDROGEN

🔇 FAUN 🍭 ZOELLER

HYDROGEN TRANSPORT

C

26/10/2021

Depending on the amount of hydrogen required (Throughput) different storage and transportation methods exist.

One LH2 truck can transport around 3.500 kg hydrogen.

BLUEPOWER

9

PROPULSION SYSTEMS

Battery Electric Vehicles vs Fuel Cell Electric Vehicles

Although fuel cell systems and batteries are seen by some as competing technologies, they are actually complimentary technologies, that both offer different advantages depending on use-cases, cost and regulations.

Different Vehicles will be better suited to differing propulsion systems.

Small cars / Urban mobility might be better suited to BEV propulsion as they are light weight,. Have lower energy usage needs and cover less distance.

Heavier larger vehicles covering larger distances with higher energy demands will be better suited to FCEV propulsion.

Large Ships & Aircraft might suit Bio and H2 based synthetic fuels

26/10/2021

- WORKING PRINCIPAL FUEL CELL

FAUN ELECTRIC DRIVE EXPERIENCE

DUALPOWER / FUELCELL / BLUEPOWER

Jan 2006	Alternate Drive Idea = DUALPOWER
Jan 2009	First Trial runs of DUALPOWER
July 2009	DUALPOWER (20 Vehicles for field testing)
Oct 2009	FUELCELL Hydrogen fuel cell refuse collection vehicle
Nov 2010	Handover of DUALPOWER to the operator
June 2011	FUELCELL vehicle in Berlin
May 2018	Concept presentation BLUEPOWER at IFAT 2018
Oct 2019	Delivery of the first fully electric vehicle to BEG Bremerhaven
Jan 2020	Hydrogen Summit: Presentation of prototype refuse collection vehicle and sweeper
June 2020	Working Prototype with hydrogen
July 2020	Establishment of a hydrogen competence centre in Osterholz-Scharmbeck

BLUEPOWER

WHAT IS BLUEPOWER

BLUEPOWER - WASTE COLLECTION VEHICLE

All necessary BLUEPOWER components are installed in a chassis without conventional drive technology (so called Glider):

BATTERY-PACKAGE:

Battery capacity: 85 kWh **Collection performance:**

2 x 10 t waste with an intermediate charging(40 min, 150 kW fast charging station)**Range:** 20 km transport

Chemistry:

LiFePo or NMC (subject to availability)

HYDROGEN FUEL CELLS:

Fuelcells: 30 up to 90 kW

HYDROGEN TANKS: Storage: 150 kWh – 600 kWh Pressure: 700 bar Filling time: approx. 7-15 minutes Range: up to 400 km

• WHAT IS BLUEPOWER

(BLUEPOWER

🕻 FAUN 🍭 ZOELLER

Tanks and Fuel Cells in the Chassis

Auxiliary Equipment installed as Normal

Cement Mixer / Fridge Box etc

Built in Full Commercial & Technical cooperation with Daimler AG

Full Manufacturing responsibility with FAUN – Warranty etc

VARIOPRESS ANIMATION

VARIOPRESS

RELIABLE PROGRESSIVE

ROTOPRESS ANIMATION

BLUEPOWER Competence Adapt energy concept to local requirement based on real data simulation of the vehicle design parameterization data acquisition energy equipment of the with regard to using a data of energy requirement vehicle energy supply management logger based on the recorded data

15

	Wed 16/12	Tue 24/11	Wed 25/11	Mon 16/11	Mon 23/11
Duration (h:m)	9:33	9:36	10.29	8:26	9:16
Distance (miles)	205	120.5	109.3	105.6	80.2
Fuel used	124.2	93.5	85.9	80.5	74.3
Energy used (KW/h)	406.19	306	281	263.12	243.22
Total single bins	406	289	253	267	349
Total compactions	279	637	595	655	695

	Tue 17/11	Tue 08/12	Mon 14/12	Thurs 03/12	Wed 02/12
Duration (h:m)	8:09	8:54	6:45	7:50	7:00
Distance (miles)	97.6	83.9	84.5	55.9	65.8
Fuel used	74.2	74.1	66.6	59.8	58.6
Energy used (KW/h)	242.72	242.31	218.05	195.59	191.89
Total single bins	216	615	508	820	251
Total compactions	596	490	295	560	433

	Thurs 19/11	Wed 09/12	Wed 18/11	Tue 01/12	Thurs 26/11
Duration (h:m)	8:06	7:15	6:57	6:21	7:13
Distance (miles)	55.9	63.4	65.2	54.7	55.3
Fuel used	58.3	57.5	57.1	54.7	54.5
Energy used (KW/h)	190.75	188.35	186.84	179.11	178
Total single bins	253	592	204	211	251
Total compactions	759	428	587	395	410

	Mon 07/12	Mon 30/11	Fri 27/11	Thurs 10/12	Tue 15/12
Duration (h:m)	6:49	6:22	7:15	6:02	6:11
Distance (miles)	50.9	59.1	42.1	54.6	54.1
Fuel used	53.7	53.4	42.1	47.6	45.0
Energy used (KW/h)	175.7	174.56	156.2	155.77	147.25
Total single bins	695	251	259	475	468
Total compactions	457	427	519	374	315

	Fri 20/11	Fri 04/12	Fri 11/12	Fri 18/12	Thurs 17/12
Duration (h:m)	6:58	6:14	5:48	0:22	n/a
Distance (miles)	34.2	23.7	30.5	7.5	n/a
Fuel used	43.8	37.8	36.0	3.8	n/a
Energy used (KW/h)	143.34	123.64	117.81	12.54	n/a
Total single bins	274	709	535	n/a	n/a
Total compactions	653	380	384	n/a	n/a

Energy Consumption below 190KW/h Energy Consumption between 190KW/h & 240KW/h Energy Consumption above 240KW/h

Total Days Tested: 23

Number of Days below 190KW/h: 12

Number of Days between 190KW/h & 240KW/h: 4

Number of Days above 240KW/h: 7

		Basic configuration	One fuel cell	Two fuel cells	Three fuel cells
	Battery and intermediate charging	R: 10 km C: 2 x 11,5 to S: City			
	Battery + 1 tank		R: 100 km C: 2 x 11,0 to S: City	R: 100 km C: 2 x 10,9 to S: Rural	
speed profile	Battery + 2 tank		R: 200 km C: 2 x 10,8 to S: City	R: 200 km C: 2 x 10,7 to S: Rural	R: 200 km C: 2 x 10,6 to S: Highway
apacity S: sı	Battery + 3 tank		R: 300 km C: 2 x 10,6 to S: City	R: 300 km C: 2 x 10,5 to S: Rural	R: 300 km C: 2 x 10,4 to S: Highway
: collection c	Battery + 4 tank		R: 400 km C: 2 x 10,4 S: City	R: 400 km C: 2 x 10,3 to S: Rural	R: 400 km C: 2 x 10,2 kg S: Highway
R: range C	Pure battery (400 kWh)	R: 400 km C: 2 x 6,0 to S: Highway			

FAUN VIDEO – Handover and test use

- FAUN VIDEO - REFUELLING – Jul 2020

PROGRESS SO FAR.

- 85Kw BEV Rotopress: 19.6.19 Operating in Bremen 2 x 11t collections
- 40min Intermediate charge @ 150kW
- 1xFC/2Tanks 20t . 6.5kg/day of H2 90-100km Range
- 3 xFC/ 4Tanks 21t range 242km
- Max Speed 120km (limited @86km)
- 38% Regeneration (braking)
- At Pump fuel filling 700bar / 10 mins
- 24 in operation (Germany & France)
- RHD UK Q3 2022
- Current Order Book 87 units Order Book at end of 2021 156 units
- Dedicated production facility at OHZ/Bremen (output 800 / year 2025)
- Build time 10/12 weeks
- 75 dedicated staff in facility
- Full Technical/ Commercial Supply Agreement with Daimler AG
- Elektra / E-ROTOPRESS demo Q4
- Renault ZE VARIOPRESS demo Q2 2022
- Scania ROTOPRESS demo Q2 2022
- E Econic Demo Plan Variopress / Rotopress Q1 2022
- E RCV & Lifters

Thank you for your kind attention

QUESTIONS & OPEN DISCUSSION

•.

