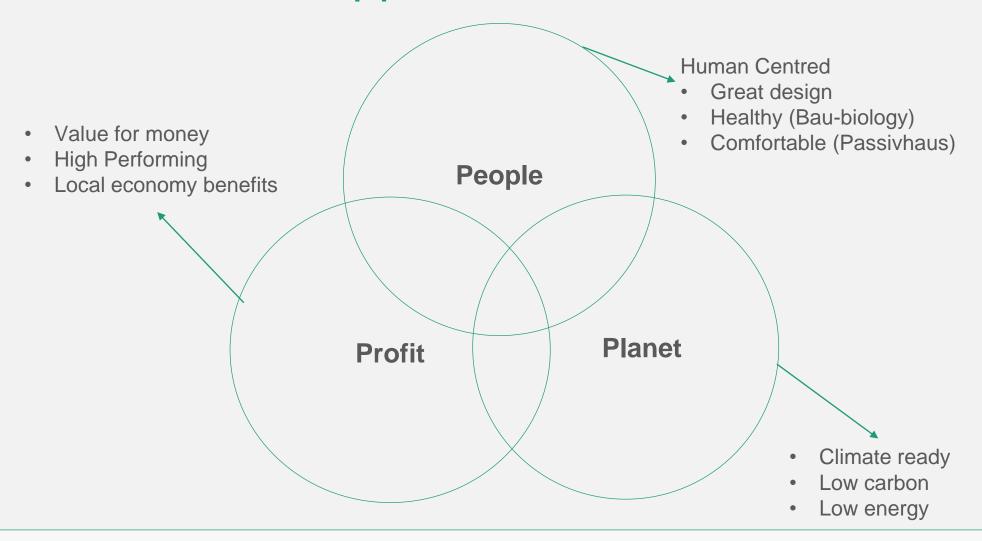

St. Sidwell's Point

A Case for Passivhaus & Building Biology in Leisure Buildings

Emma Osmundsen

Managing Director | Exeter City Living


Triple Bottom Line Approach

Triple Bottom Line Approach

First Generation Passivhaus

Rowan House

Knights Place

Second Generation Passivhaus

Third Generation Passivhaus

Chester Long Court

St Loyes Extra Care: Fourth Generation Passivhaus

Exeter City Living: UK's First Profit for Purpose Passivhaus Development Delivery Company

- Owned by Exeter City Council
- Pipe of 1,200 certified Passivhaus homes, (affordable & market sale)
- Consultancy team assisting other public sector & Housing Association partners (Teckel company)
- Advising on new Passivhaus Leisure Centre's in Scotland, Northern England and in the South West
- Readily available vehicle for Councils to appoint to deliver climate emergency and zero carbon ambition

St Sidwell's Point: Fifth Generation Passivhaus

Development Brief

An Urban Leisure Centre

- 25m competition swimming pool
- 20m community pool
- Children's confidence/play water
- Health and fitness centre (150 gym station and flexible studio)
- Café
- Children's soft play activity space
- Spa (including hydrotherapy pool, heat experience and treatment room)
- Rooftop terrace
- Environmental factors
- Contract = £35m

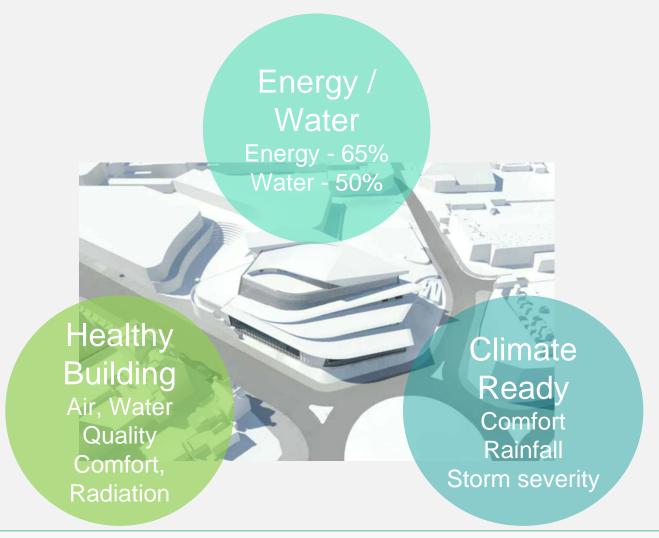
Project Team

SPACE . PLACE

RANDALL SIMMONDS

Baker Ruff Hannon

ARUP LDĀDESIGN



Development Parameters

Case for Passivhaus, Climate Resilient & Healthy Leisure Centre

Passivhaus (energy)	Climate Resilient	Healthy
Passivhaus design ensures all energy uses are accounted for	Ensures good summer comfort without compromising energy performance	Ultra filtration and low chemical water treatment ensures healthier water quality and reduces risk of asthma
Outcome based performance parameters = reliable, scientifically proven energy savings	Business case assumptions delivered even when climate changes	High levels of comfort and water quality will increase user satisfaction and is expected to increase customer numbers
Reliable energy performance and running costs ensure economic viability and project delivers on business case assumptions	Low water use strategies reduce energy demand, costs and ensures resilience during droughts	High quality ventilation provides filtered outdoor air reducing indoor air contamination from particulates
	High quality air filtration maintains air quality and protects from increase in contaminates from particulates and pollen under future climate scenarios	Higher levels of natural light and human- centric/circadian lighting design promotes health and customer satisfaction

Energy Saving

- The Great Unknown: Energy Cost!
- Energy saving forecast: an energy cost reduction of 65%
- Conventional build predicted utility costs: £57/m²/pa
- Passivhaus predicted utility costs: £20/m²/pa

Annual Energy and Carbon Saving Potential

Carbon storage of 105 hectares (250 football pitches) of managed woodland

Emissions of 750 average UK cars (commuting 40 miles a day)

Total energy consumption of 350 average four person households

Enough to make 140 million cups of tea

Environmental Factors

Client Brief

- Climate Ready Design
- Water Use
- Overheating
- Daylight
- Healthy Building
- Energy

Context...Criteria...Solution

Climate Ready Design

Context

- The climate is changing
- Majority of buildings constructed today will still be in use during the 2nd half of this century, performing under considerably different conditions
- Climate ready design increases resilience, extends useful life and economic viability
- Implementation from the outset will reduce long-term maintenance and energy costs
- Does not necessarily result in increased capital costs

Climate Ready Design

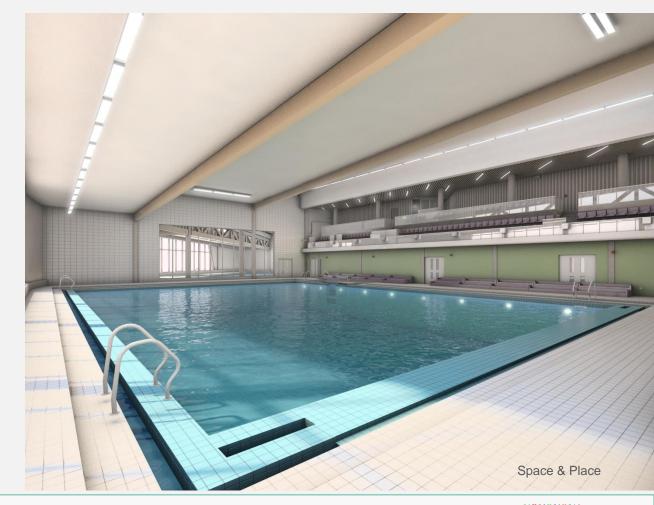
Solution

- Design for Comfort
 - Designs thermally modelled using IES and probabilistic future weather data from the Prometheus Project (2030, 2050, 2080 50th percentile high emission scenario)
- Water Management
 - Reduce water demand (50% reduction) and improve resilience to flooding (30% contingency)
- Construction
 - Detailing developed to cater for increased storm severity, increased driving rain and changes in ground water level

Water Use

Context

- Predicted future climate scenarios
- ~50% less rainfall in summer
- Longer periods of drought
- Typical swimming pool of comparable size average water consumption ~70m³/day or 26,000m³/year
- Sufficient to sustain 140 households
- Base case Pool Water Treatment Advisory Group (PWTAG) good practice guidance in combination with BS6465



Water Use

Solution

- Reduce water demand by 50%
- Increased internal humidity (64% RH) to reduce evaporation rates – enabled by high-performance building envelope
- Water saving sanitary appliances
- Water saving filtration techniques
- Water harvesting from excess backwash water - flush WCs (100%)

Daylight

Context

- Natural light is an essential nutrient
- Day-lit environments increase occupant/user satisfaction, mood, productivity and comfort
- Provides mental and visual stimulation necessary to regulate human circadian rhythms
- Controls production of important hormones and vitamins, protecting from common diseases including diabetes, osteoporosis, hypertension, MS and others
- Energy savings on artificial lighting

Daylight

Solution

- IES daylight factor modelling at Stage D
- Further modelling and advice on glare issues
- Window sizes and locations adapted and developed into Stage F1 designs
- Glazing selection to facilitate full spectrum daylighting

Healthy Building

Context

- Water Quality
- 45min swimming lesson, a child swallows about a pint of pool water
- UK pools estimated 10-20 times higher parasitic infection than other EU countries
- Water normally treated with chlorine
 highly toxic
- Nitrogen trichloride layer above pool surface
- Sand filtration with 'flocculants'

Radiation

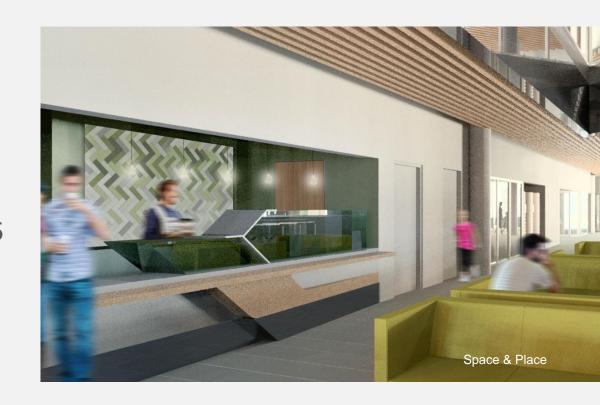
- Human body controlled by weak electromagnetic fields
- Electrically charged particles in the body will align with external fields, oscillate and go into resonance
- Trigger stress response and symptoms
- Artificially generated EMFs or electrosmog will always affect life processes
- Static electric, static magnetic, ELF static, ELF electric, radio frequency

Air Quality

- Some agents still used in general UK construction have been classified by the WHO as 'carcinogenic' (1) or 'potentially carcinogenic' (2B)
- Including: formaldehyde, benzene, polychlorinated biphenyls
- Most VOCs typically found in modern paints, glues and timber treatments are in the same category as tobacco smoke (1)

Healthy Building

Criteria


- Water quality
 - World Health Organisation drinking water quality
 - DIN19643 German water treatment standard

Radiation

Offices, treatment rooms and crèche to SBM 2015
 Part A 'no concerns'

Air quality

Offices and crèche to SBM 2015 Part B 'no concerns'

Healthy Building

Solution

- Water Quality
- Ultrafiltration
- No chemicals required (aside from cleaning)
- Compact plant size
- Capable of achieving 90-100% pathogen removal
- UV treatment used in combination with ultrafiltration

- Radiation
- Following IBN best practice guidance to reduce EMFs
- Radial wiring
- Consider positions of cable runs and sockets
- Avoid two-way switches, looped lighting connections and dimmer switches
- Hardwired data and telephone connections
- Faraday caging to crèche and treatment rooms

Air Quality

- Material specification reflecting best practice guidance (IBN)
- Reduce off-gassing and indoor air pollutants
- Offices and crèche natural or mineral building products specified
- Areas ventilated via CO₂ controlled mechanical ventilation set to 800ppm as advised by IBN

Overheating

Context

- Comfortable internal environment
- Reduced reliance on air conditioning
- Avoid negative impact on cooling energy demand
- Avoid impact on economic viability

Overheating

Solution

- Dynamic thermal model of Stage D design through IES
- Assess glazing ratios, shading and ventilations strategies in pool halls
- Optimised MVHR ventilation to pool halls, controlled via humidity and upper temperature limits
- Night cooling AHUs in summer bypass mode and actuated windows (BMS-linked) to upper floors
- Natural ventilation strategy for summer stack effect through stairwells
- Openable windows to all occupied spaces

Energy

Context

- Increased thermal comfort and air quality
- Reduced heating demand and energy costs
- Higher internal surface temperatures
- Reduced internal surface condensation risk
- Reduced maintenance costs
- Energy savings greater than 65% when compared to best practice pools

Energy

Criteria

Passivhaus Leisure Building

Fixed Energy Targets

• Space Heating Demand <60kWh/m²a

Pool Halls

<40kWh/m²a

All other areas

<20kWh/m²a

Space Cooling Demand

<22kWh/m²a

 Pool Water Heating Demand <73kWh/m²a

DHW Heating Demand

<56kWh/m²a

Electricity

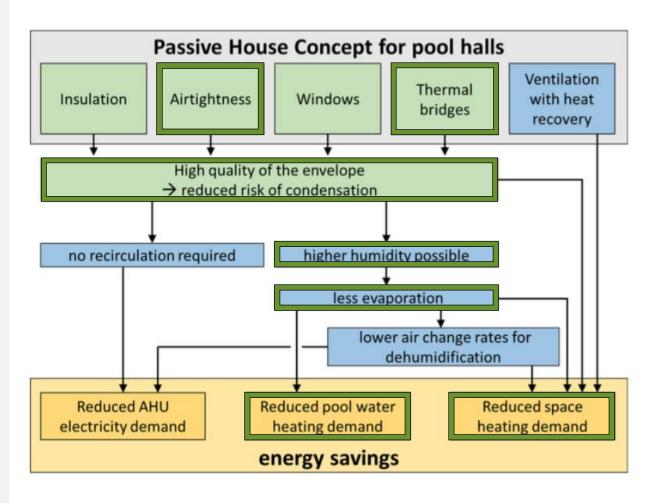
<120kWh/m²a

Airtightness

• Air Permeability @50Pa <0.4m³/h/m²

Thermal Comfort

Cool Temperate Climate Zone



Energy

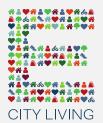
Solution

- High levels of insulation
- High performance windows, doors and curtain walling
- Compact building form
- Optimum solar orientation
- Optimised thermal bridges
- Highly efficient MVHR systems
- Internal thermal zoning
- Increased relative humidity to pool areas
- Waste energy from cooling system for heat
- High levels of airtightness

Passivhaus Institute

Passivhaus Leisure Centre – Why?

- Energy Savings 'pay' for capital uplift in construction costs
- Enhanced internal environment should attract more customers and strengthen revenue potential
- High specification finishes and quality assurance will reduce life-cycle costs
- Climate Proofing the design mitigates against future retrofit requirements & running costs
- Compelling business case attracts investment/ funding
- Publicity and PR opportunities


"Quality is the best business plan."

Yvon Chouinard

Thank you...

Emma Osmundsen Managing Director Exeter City Living Ltd

emma.osmundsen@exeter.gov.uk

Emma Osmundsen

@EmmaOsmun

