

APSE GLASGOW

Leigh Foster

Specification Manager

North & Scotland

Retexturing

- 30 years in Highways
- 20 years Asphalt Contracting
- 10 years Bitumen Sales

The Low Carbon Alternative Retexturing

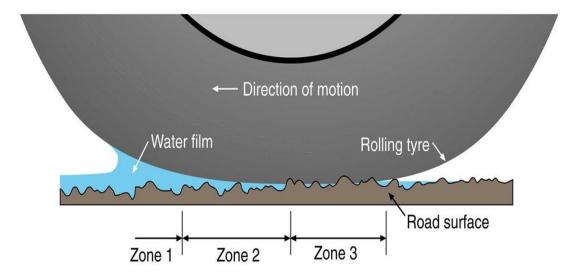
Leigh Foster Specification Manager North & Scotland Retexturing

Summary

Use of the Retexturing Process :

- Save Carbon
- Save Cost
- Save Time
- Extend Service Life
- Improve Skid Resistance Reduce Accidents Reduce Barrier Strikes

Topics Covered :

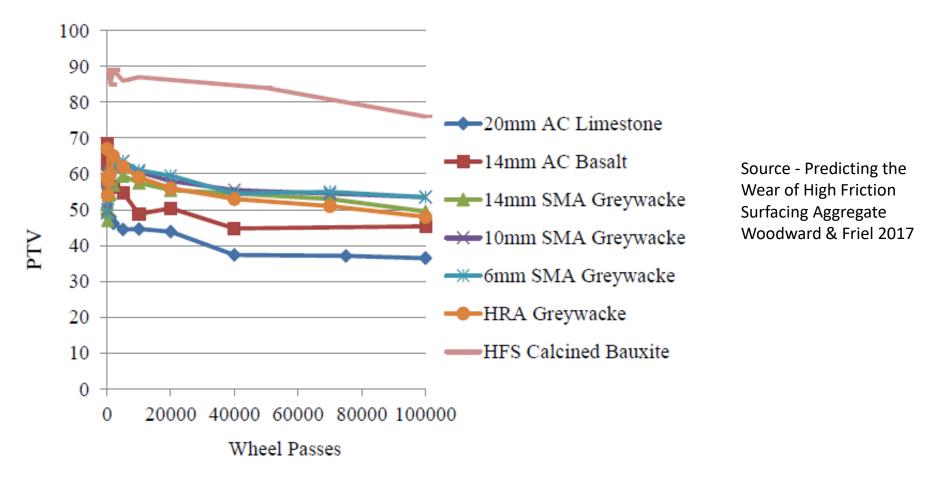

- Friction, Material Durability, Testing
- National Standards
- How is Skid Resistance Lost?
- What/Why/Where?
- Benefits

Factors Affecting Friction

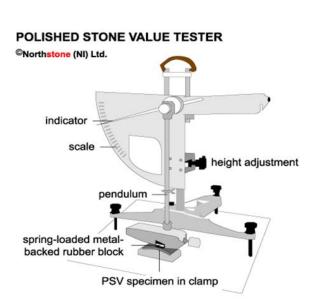
w

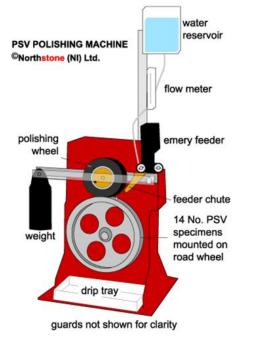
Tyre Contact – Wet Conditions

Zone 1: Continuous water film Zone 2: Interrupted water film Zone 3: Dry contact


Material Durability

Skid resistance after simulated trafficking


Testing carried out using the WJ Road Test Machine (APT) for a total of 100,000 wheel passes. Used to simulate slow speed/high stress trafficking in laboratory controlled conditions.

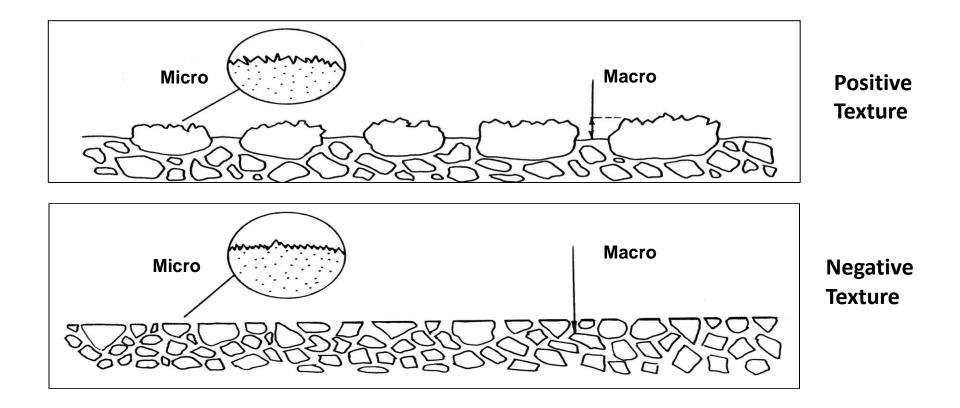


Average skid resistance after simulated trafficking

Aggregate Properties

- Polished Stone Value (PSV) <u>High</u> Value
- Aggregate Abrasion Value (AAV) Low Value

How is skid resistance lost?


- Increase in traffic volumes
- Aged asset coming to the end of its life
- Build up of bitumen or detritus

When the surface gets worn or becomes contaminated this results in a loss of one, or both of the following:

Macro Texture

Micro Texture

Types of Surface Texture

Why Retexture ?

- Loss of Texture Standing Water
- Polishing/Wearing SMA Thin S/C
- Polishing HRA with PCC Chips

Design Manual for Roads and Bridges

Pavement Design

CD 227 Design for pavement maintenance

CÒMHDHAIL ALBA

(formerly HD 30/08, HD 32/16)

Revision 0

Summary

This document describes the requirements to determine the need for maintenance and to design pavement renewals maintenance treatments on the UK motorway and all-purpose trunk roads. This document, along with CS 230, supersedes HD 30/08 and HD 32/16 which are withdrawn. This document includes guidance on retexturing techniques that was formerly in HD 31/94 and HD 37/99. This document, along with CM 231 and CD 236, therefore supersedes HD 31/94 and HD 37/99 which are withdrawn.

Design For Pavement Maintenance

DMRB CD227

National Standards

Application by Overseeing Organisations

Any specific requirements for Overseeing Organisations alternative or supplementary to those given in this document are given in National Application Annexes to this document.

Feedback and Enquiries

Users of this document are encouraged to raise any enquiries and/or provide feedback on the content and usage of this document to the dedicated Highways England team. The email address for all enquiries and feedback is: Standards_Enquiries@highwaysengland.co.uk

This is a controlled document.

Design Manual for Roads and Bridges

highways england

Pavement Inspection & Assessment

CS 228 Skidding resistance

(formerly HD 28/15)

Revision 2

Summary

This document describes the requirements for the provision and management of appropriate levels of skid resistance on UK motorway and all-purpose trunk roads. It describes the requirements for making and interpreting measurements of skid resistance. It also provides a method to identify locations for treatment to improve skid resistance where that treatment is likely to reduce the risk of skidding related incidents in wet conditions. This document is complemented by DMRB document HD 36/15, which sets out the requirements and associated advice on surfacing material characteristics necessary to deliver the required skid resistance properties.

Application by Overseeing Organisations

Any specific requirements for Overseeing Organisations alternative or supplementary to those given in this document are given in National Application Annexes to this document.

Feedback and Enquiries

Users of this document are encouraged to raise any enquiries and/or provide feedback on the content and usage of this document to the dedicated Highways England team. The email address for all enquiries and feedback is: Standards_Enquiries@highwaysengland.co.uk

This is a controlled document.

DMRB CS228 Skidding Resistance

National Standards

Scrim & Grip Tester

Leigh Foster Specification Manager North & Scotland Retexturing

What is Retexturing ?

Retexturing is the mechanical reworking or hydro retexturing of a "<u>sound"</u> asphalt or concrete surface.

The retexturing process restores <u>either</u> skidding resistance, texture depth or both.

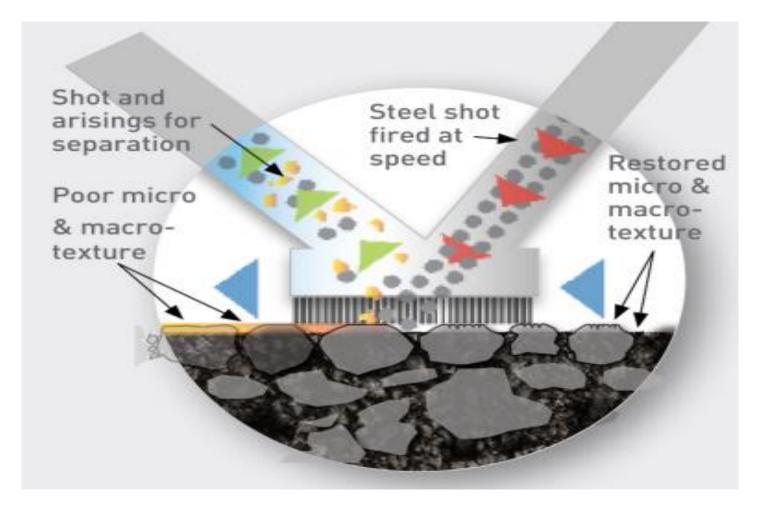
Types of Retexturing

1. Captive Shot Blast

2. Hydro

Restoring road surfaces to a safe condition in a quick, environmentally responsible, and cost-effective way

Captive Shot Blast Retexturing

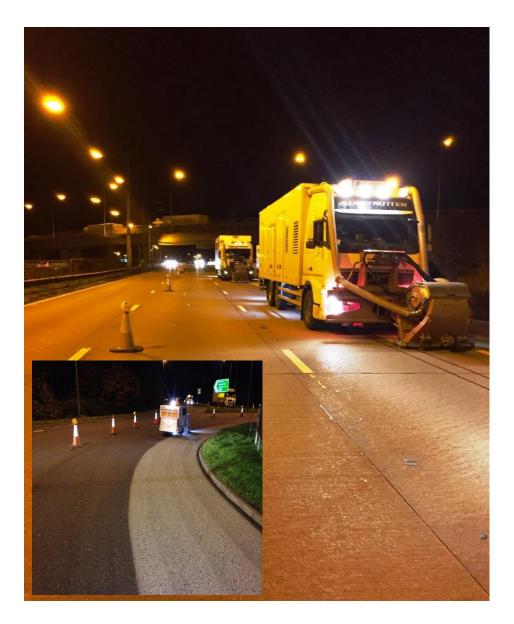

Captive Shot Blast Retexturing

Captive Shot Blast Retexturing Time Sensitive Sites

Captive Shot Blast Retexturing

Video Captive Shot Blasting

Example of Captive Shot Blast Retexturing


Northumberland – Captive Shot Blast

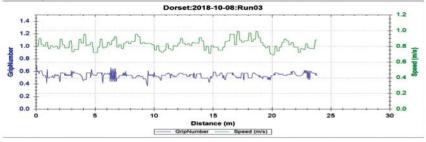
Area 4 – National Highways

Captive Shot Blast Retexturing Scheme February 2012

- Shot Blasting carried out to 350,000m2 of the Area 4 National Highways network for Balfour Beatty and Mott Macdonald
- The surface had scored low SCRIM measurements and required intervention
- Both sit on and lorry mounted units were used
- In excess of <u>1814 tonnes</u> of Carbon Dioxide saved compared to traditional treatment options
- Over <u>£7.8m</u> in savings achieved by not having to plane out surface course, resurface and replace roadmarkings/roadstuds.
- The scheme included roundabouts and difficult to access areas ideal for sit on machines
- 6 week programme

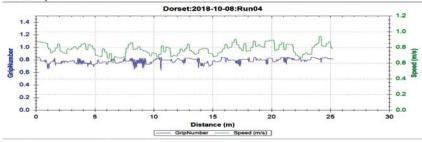
Reporting & Testing

Test Results


Textureblast Limited

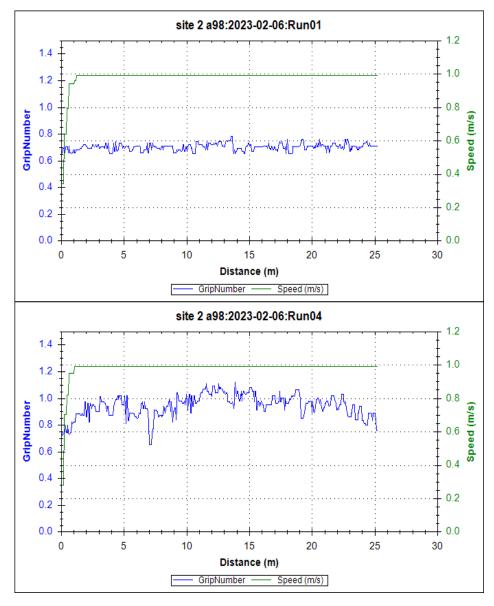
TO:		Tremayne House
		Westpark
		Wellington
		Somerset, TA21 9AD
		Tel: 01903 716358
TEST LOCATION:	Site	Email: info@textureblast.net
ROAD SURFACE:	HRA	Website: www.textureblast.net
PRE TEST DATE:	Monday, 8 October	Registered in England No. 5675801
POST TEST DATE:	Monday, 8 October	VAT No. 878 6337 65

Determination of Skid Resistance on Wet Surface Using Findlay Irvine Micro GT Griptester


Distance (M)	Latitude	Longitude	Grip No.	Grip No.	Percentage Increase
0	050:55.7324N	002:30.6038W	0.60	0.85	41.67%
5	050:55.7298N	002:30.6026W	0.55	0.75	36.36%
10	050:55.7273N	002:30.6018W	0.52	0.80	53.85%
15	050:55.7246N	002:30.6014W	0.60	0.80	33.33%
20	050:55.7222N	002:30.6013W	0.55	0.85	54.55%
25	050:55.7198N	002:30.6014W	0.53	0.86	62.26%
		Average	0.56	0.82	46.57%

Pre Test Graph

Post Test Graph



w

Aberdeenshire - Site A98 - Captive Shot Blast

42%

Aberdeenshire - Captive Shot Blast

		C'1 . 4 4 4 0	04 2022 07					
		Site 14 AS	81:2023-02	2-09				
Run 01	Before	0.7	0.71	0.74	0.72	0.69		0.712
Run 02	After	0.99	0.91	0.96	1	1		0.972
Run 03	Before	0.76	0.7	0.67	0.73	0.71		0.714
Run 04	After	0.99	1.02	0.97	1	0.99		0.994
Run 05	Before	0.77	0.73	0.77	0.75	0.81		0.766
Run 06	After	1.01	1.02	0.99	1.03	1		1.01
Run 07	Before	0.71	0.74	0.7	0.68	0.64		0.694
Run 08	After	0.9	1.01	0.97	0.95	1.06		0.978
							Before	0.72
							After	0.99
							Increase	0.27
							%	37%

site 14 a981:2023-02-09:Run01 1.2 1.4 1.0 1.2 1.0 0.8 GripNumber Speed (m/s) 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 15 25 0 5 10 20 30 Distance (m) Chood (m/c) site 14 a981:2023-02-09:Run02 1.2 1.4 1.0 1.2 1.0 0.8 GripNumber Speed (m/s) 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 + 0.0 15 20 25 30 0 5 10 Distance (m) GripNumber -Speed (m/s)

37%

wj

Captive Shotblasting

6 years

Captive Shotblasting

5 years

шj

Determination of Skid Resistance on Wet Surface Using Findlay Irvine Micro GT Griptester

Wiltshire County Council

Site:	Rank 42 A342 Old Derry Hi	1	Pre Test	Post Test	Post Test
Road Surface:	HRA		11/03/2016	04/05/2016	16/02/2022
Distance (M)	ance (M) Latitude Longitud		Grip No.	Grip No.	Grip No.
0	051:26.2604N	002:04.2889W	0.85	1.04	1.00
5	051:26.2625N	002:04.2921W	0.79	0.93	0.91
10	051:26.2643N	002:04.2948W	0.77	1.02	0.86
15	051:26.2662N	002:04.2977W	0.83	0.95	0.87
20	051:26.2682N	002:04.3007W	0.77	1.01	0.81
25	051:26.2704N	002:04.3036W	0.78	1.05	0.82
	8	Average	0.80	1.00	0.88
at.	8				
Site:	RT0017 A4 Bath Road Box	at County Boundary	Pre Test	Post Test	Post Test
	RT0017 A4 Bath Road Box Surface Dressing	at County Boundary	Pre Test 17/05/2017	Post Test 17/05/2017	Post Test 16/02/2022
		at County Boundary			Post Test 16/02/2022 Grip No.
Site: Road Surface: Distance (M) 0	Surface Dressing		17/05/2017	17/05/2017	16/02/2022
Road Surface: Distance (M)	Surface Dressing Latitude	Longitude	17/05/2017 Grip No.	17/05/2017 Grip No.	16/02/2022 Grip No.
Road Surface: Distance (M) 0	Surface Dressing Latitude 051:24.5050N	Longitude 002:17.449W	17/05/2017 Grip No. 0.88	17/05/2017 Grip No. 0.99	16/02/2022 Grip No. 0.92
Road Surface: Distance (M) 0 5	Surface Dressing Latitude 051:24.5050N 051:24.5068N	Longitude 002:17.449W 002:17.425W	17/05/2017 Grip No. 0.88 0.87	17/05/2017 Grip No. 0.99 1	16/02/2022 Grip No. 0.92 0.91
Road Surface: Distance (M) 0 5 10	Surface Dressing Latitude 051:24.5050N 051:24.5068N 051:24.5068N 051:24.5084N	Longitude 002:17.449W 002:17.425W 002:17.394W	17/05/2017 Grip No. 0.88 0.87 0.89	17/05/2017 Grip No. 0.99 1 1.03	16/02/2022 Grip No. 0.92 0.91 0.96
Road Surface: Distance (M) 0 5 10 15	Surface Dressing Latitude 051:24.5050N 051:24.5068N 051:24.5084N 051:24.5113N	Longitude 002:17.449W 002:17.425W 002:17.394W 002:17.363W	17/05/2017 Grip No. 0.88 0.87 0.89 0.82	17/05/2017 Grip No. 0.99 1 1.03 1.02	16/02/2022 Grip No. 0.92 0.91 0.96 0.94

Determination of Skid Resistance on Wet Surface Using Findlay Irvine Micro GT Griptester

Dorset County Council

Site:	Portland Road, Weymouth	6	Pre Test	Post Test	Post Test	
Road Surface:	SMA		21/03/2018	21/03/2018	17/02/2022	
Distance (M)	Latitude	Longitude	Grip No.	Grip No.	Grip No.	
0	50.58899	-2.472518	0.76	1.05	0.97	
5	50.588947	-2.472468	0.83	0.90	0.94	
10	50.588903	-2.472435	0.75	1.00	0.97	
15	50.588863	-2.472413	0.78	0.94	0.88	
20	50.588823	-2.472387	0.81	0.98	0.84	
25	50.588787	-2.472368	0.88	0.87	0.92	
V		Average	0.80	0.96	0.92	

Site:	Preston Road, Preston		Pre Test	Post Test	Post Test	
Road Surface:	SMA	14 July 21	21/03/2018	21/03/2018	17/02/2022	
Distance (M)	Latitude	Longitude	Grip No.	Grip No.	Grip No.	
0	50.646695	-2.419315	0.69	0.96	0.78	
5	50.646697	-2.419387	0.65	0.91	0.84	
10	50.646695	-2.419463	0.65	0.8	0.8	
15	50.646702	-2.419525	0.62	0.95	0.85	
20	50.6467	-2.419592	0.63	0.87	0.81	
25	50.6467	-2.419667	0.65	0.85	0.86	
And a		Average	0.65	0.89	0.82	

Captive Shotblasting

4 years

Case Study – Transerve SW Contract Transport Scotland

A78 B7047 Junction to Montfode Rbt								Average Grip No. & Weeks after Retexturing									
	A78 B7047 Junction to Montrode Kot							Date of Test	15/03/2016	12/04/2016	25/07/2016	25/01/2017	14/08/2017	28/08/2018			
Route	Site Name	Direction	Approx. Section Extents Tested	Approx. Distance Tested	Surfacing Type	Date of Surfacing	Traffic - AADF (for appropriate Lane)	Traffic Source	Date of Retexturing	0	3	18	44	73	127		
A78	Montfode	SB (CL1)	14040/07 Ch1720-2160	440	HRA	unknown	3992	IRIS	18/03/2016	0.61	0.84	0.75	0.81	0.6	0.6		
A78	Montfode	NB (CR1)	14040/07 Ch2160-1720	440	HRA	unknown	3948	IRIS	18/03/2016	0.69	0.8	0.78	0.86	0.61	0.68		

A 9 Dullring Dht to Catchurg Dht								Average Grip No. & Weeks after Retexturing							
A8 Bullring Rbt to Cartsburn Rbt							Date of Test	11/04/2016	20/04/2016	25/07/2016	26/01/2017	14/08/2017	28/08/2018		
Route	Site Name	Direction	Approx. Section Extents Tested	Approx. Distance Tested	Surfacing Type	Date of Surfacing	Traffic - AADF (for appropriate Lane)	Traffic Source	Date of Retexturing	0	1	15	41	70	124
A8	Bullring	NB (CL1)	13870/24 - Ch. 0 - 158m	158	HRA	unknown	5652	IRIS	14/04/2016	0.56	0.82	0.85	0.7	0.79	0.64

Captive Shotblasting

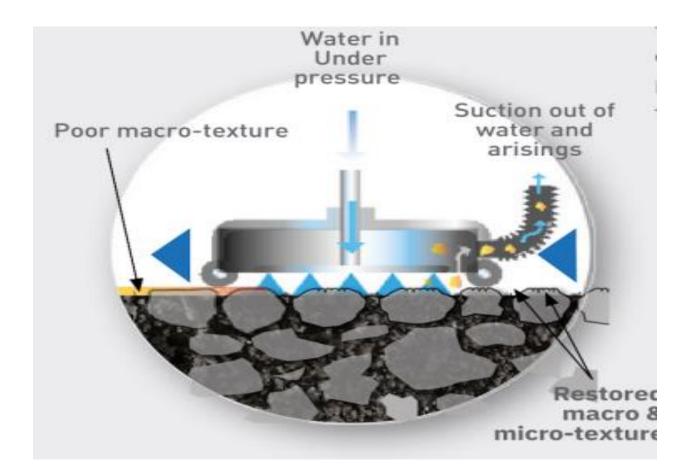
Effectiveness of Retexturing

Feedback on effectiveness had previously been largely anecdotal informed by the absence of sites from subsequent priority lists.

Effectiveness of Retexturing

Until...

- On average retexturing reduced TS SCRIM prioritisation score (often enough to remove the need for investigation)
- Benefits can last **2 4 years**
- Site category doesn't appear to be strong influence on performance
- From limited data original PSV has influence
- Retexturing is a lower carbon option than resurfacing (RSTA 0.357/ SD 0.825/ Resurface 4.567)
- Asphaltic materials respond better than surface dressing


2. Hydro Retexturing

Hydro Retexturing

Hydro Retexturing

Typical rural roads that have been surface dressed and become "fatty".

To remediate fatty surface dressing is very costly. Options are Insitu or Exinsitu recycling techniques

It is likely using recycling techniques you will encounter tar. In todays economic climate it's a costly option and difficult to justify financially.

The Hydro retexturing Process is both carbon and cost efficient and will remove the excess fatty binder. It cleans out the texture and exposes the aggregate, restoring skid resistance (micro & macro-texture).

Provides a low- cost solution to an awkward and potentially dangerous problem.

Video Hydro Retexturing Machine

Example of Hydro-Retexturing

Kelso - Hydro-Retexturing

Lincolnshire - Hydro-Retexturing

Carbon Saving

Carbon Saving

Verification Report/Statement Life Cycle Analysis Verification

LUCIDEON

Textureblast Limited

Tremayne House, Westpark, Wellington, Somerset, TA21 9AD

Verification Criteria: Principles of ISO 14040:2006 & ISO 14044:2006 "Environmental management - Life cycle assessment" ISO 14065:2013 "Requirements for Greenhouse Gas Validation and Verification Bodies for use in Accreditation or Other Forms

Product or Service Verified: "Par

of Recognition" "Partial Life Cycle Assessment Analysis Report on Textureblast Operations, version 5" (the LCA Report)

Objectives

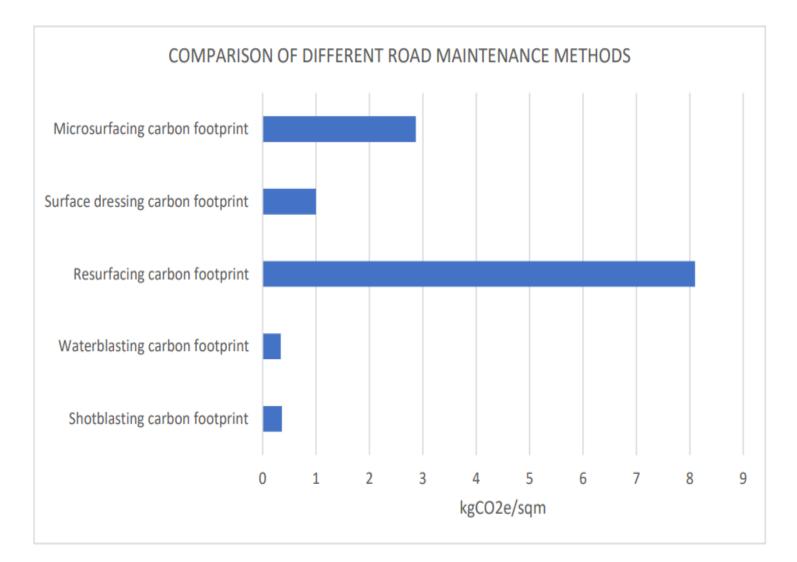
Textureblast Limited have developed a life cycle analysis report for determining the gate-to-gate CO_2 emissions for the Textureblast service.

Lucideon CICS have been contracted by Textureblast Limited to verify that the report is free from material errors and use assumptions based on robust source information.

Scope of the Verification

The scope of the verification covers the gate-to-gate life cycle assessment from Textureblast Limited's' gate to the client's gate. The latter is on-site on roads requiring this service/product.

The verification does not address the accuracy of the footprints provided by individual suppliers or other documentation as referenced in the LCA report but can be taken to assure that the calculations are based on robust/ best available source data.



Wherever this verification opinion is displayed both pages shall be made available

Independent Life Cycle Assessment Report (LCA) In accordance with ISO 14040 ISO 14044

Carbon Footprint Comparison

wj

Sustainability & Retexturing

To produce 100,000 tonnes of 10/14mm single size aggregate you would have to extract & crush 1 Million tonnes of rock.

Carbon Saving Comparison

4,000 sqm.

Resurfacing

22 tonnes of CO2 produced in asphalt production** .

**Not including the milling and laying process

Retexturing

Captive Shotblasting – **1.27 tonnes** of CO2 produced

Hydro retexturing - **1.24 tonnes of** CO2 produced

Cost Saving Comparison 4,000 sqm.

Resurfacing with 40mm of high psv surface course @ £20-25 per sqm £80 -100,000

Retexturing @ £4.00 per sqm £16,000

Further Benefits of the Retexturing Process

Will maximise the use and performance of the high psv surface course originally invested in. Immediately takes a red road out of investigatory level. Giving an authority time to decide on best course of action.

wj

Customers & Areas Worked

Strategic Road Network

Transport Scotland/Amey/Bear National Highways

Locations : Forth Road Bridge/A1/M876/A985/A92/A9/A82

Local Authority Network

Angus/Aberdeenshire/Borders/East Dunbartonshire/Lincolnshire/Leicestershire/Staffordshire/Cornwall

Locations : A699/A90/A92/A98/A7

Questions ?

WJ Group Web: www.wj.uk

