

Ultra Low Emission Vehicle Charging Infrastructure

Luke Redfern

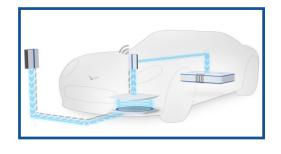
Business Development & Projects Manager luke.redfern@cenex.co.uk 01509 635 750

Agenda

- Electric Vehicle Charging Infrastructure
- Charge Point Types and Charging Speeds
- Other Fuelling Infrastructures

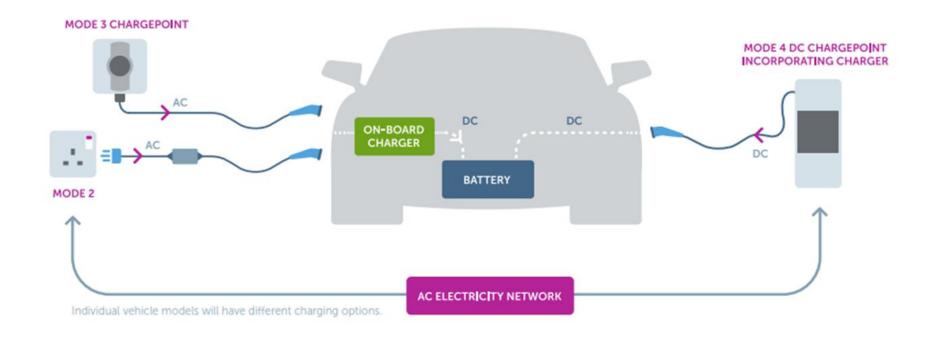
How do I charge an EV?

Connection types, charging speeds and modes



Vehicle Charging Use Cases

Inductive



AC CHARGING

DC CHARGING

Vehicle Charging

Charger Type	Charge Time	Power (kW)	Connection Type	
Slow	0-100% in 10-12 hours	Home Workplace		
Fast	0-100% in 4- 6 hours	Long stay car park Publicly accessible locations		
Semi-Rapid	0-100% in 1- 2 hours	Workplace		
Rapid	0-80% in 20- 30 mins	Depots Service stati Tesla Supero	on charger station	
Vehicle-to-Grid	0-100% in 6 hours	Pre-comme	rcial at Universities	

cenex

Vehicle Charging "Modes"

Mode 1:

- Typically domestic dumb socket with RCD protection
- No communication between EV and socket

Mode 2

- Typically domestic dumb socket with RCD protection in the plug or in-line "control box"
- Communication between EV and in-line "control box" (Control Pilot)

Mode 3

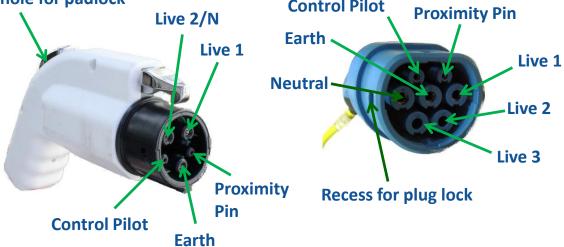
- Typically Type 2 cable with no in-line "control box"
- Communication between EV and Charge Point (Control Pilot)
- On-board charger

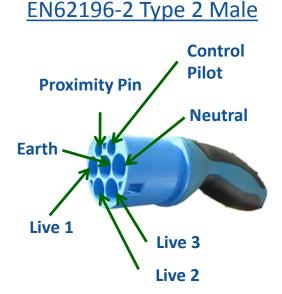
Mode 4

- Typically tethered plug cable with no inline "control box"
- Communication between EV and Charge Point (Control Pilot)
- Off-board charger

Mode 2 Cable

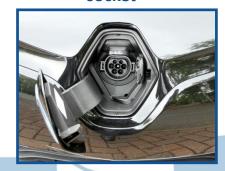
Mode 3 Cable




AC Connecting Technology

Vehicle Connector Types – AC Charging Cable

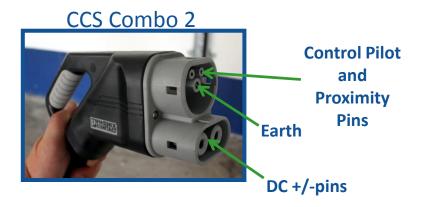
SAE J1772 Type 1 Release Button and hole for padlock Live 2/N EN62196-2 Type 2 Female Control Pilot Proximity Pin


Charge Point Side of Cable

Nissan Leaf socket

Renault Zoe socket

Tesla Model S socket



cenex

DC Connecting Technology

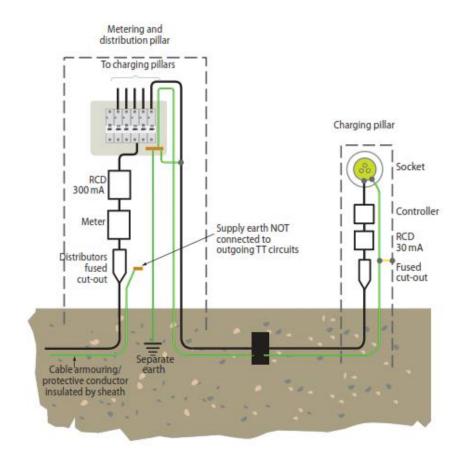
BMW i3 socket

CHAdeMO JARI JEVS/G105

Nissan Leaf socket

What does a Charge Point installation look like?

Charge Point installation components, considerations and examples



Charge Point Installation Components

A typical on-street or car park Fast Charge Point installation

EN62196-2 Type 2 Female socket

Feeder Pillar

cenex

Charge Point Installation Components

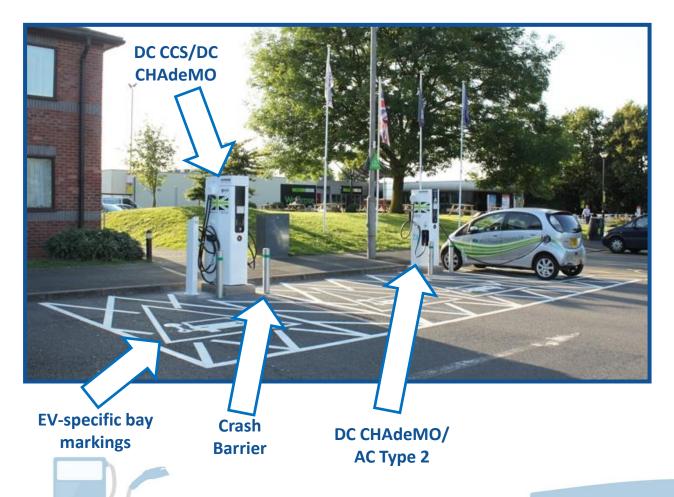
A typical workplace Fast Charge Point facility

Company branded signage

Fast Charger with Type 2 socket(s)

- Privately owned and monitored site
- Clear bay markings and signage
- Policed by own staff
- RFID card accessed Charge Point (but not always needed)

Company branded EV



cenex

Rapid Charge Point Installation

A typical UK Motorway services rapid charger facility (private site)

Network or investor branding

DfT approved signage (P660x9 and S65)

cenex

Council On-street Charge Point Installation

A typical on-street fast Charge Point facility

DfT approved sign (P660x9)

Fast Charger with 2
Type 2 sockets

DfT approved bay markings

- Council owned/monitored sites
- Clear bay markings and signage
- Traffic Regulation Order in place (contravention code 14, 71 for car parks)
- RFID card accessed Charge Point

No return within 3 hours

arking bay for

Web Search on P660x9 or S65 for working drawings

Charge Point Installation Recommendations Company Rapid

- Usually a simpler and quicker process.
- Consult with expert with extensive knowledge of charge points.
- 3+ companies to provide a quote.
- Purchase maintenance package and review the details.
- Know your business model (i.e., PAYG).
- Certified electricians are required and comply with latest standards.

- New electricity supply to support rapid chargers.
- Contact Distribution Network Operator (DNO) for power assessment.
- Location as close to Low Voltage substation as possible.
- Planning permission may be required.
- Charge Point suppliers' lead time should be short.

Charge Point Installation Recommendations Council

Considerations prior to the procurement

- All the points listed in the Company and Rapid.
- Collaborate with other Council departments.
- Site ownership.
- Existing vehicle charging facility.
- Timeline to install charge points.
- Access methods and restrictions.
- Parking space requirement.
- Electricity supply; availability and capacity.
- Traffic Regulation Order alteration requirements and timescales.
- Alternative sites.
- Operational model for the charge points installed.

Project Timescale Allowance

Shortest timescale = a few weeks

Average timescale = 4-6 months

Longest timescale = 3 years

Shortest

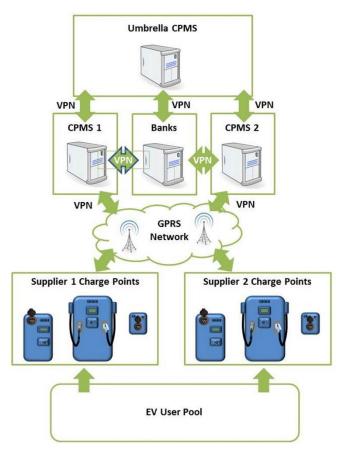
- Own site
- Everyone on-board
- Power supply available
- Equipment lead time short

Longest

- Long approval chain
- Landlord needs convincing
- No metered power supply
- Planning permission needed
- TRO needed
- Council procedures too slow
- Long equipment lead time

What is a Charge Point Management System?

A brief explanation



A word on Charge Point Management Systems

- CPMS is a Back Office function provided by a Charge Point supplier or Network Operator. It is hosted on a server that connects to Charge Points of the mobile telephone network
- The CPMS provides the following functions;
 - A database of all the Charge Points on its network;
 - 2) A database of the network's authorised EV users;
 - 3) The ability to remotely diagnose and operate Charge Point functions;
 - Collection of anonymysed EV charging data for Gov't, host and EV user billing purposes;
 - 5) A user help line and website (with location map);
 - 6) Pay As You Go billing options for EV users;
- Common CPMSs in use in the UK include Charge Your Car,
 Chargemaster Chargevision and Charge Point Services Genie
- The CPMS may be determined by who you buy Charge Points from
- A CPMS connection is an ongoing cost that must be paid to keep the charging service running and for revenue generation
- Councils should buy connected equipment
- Businesses have the option to buy connected or non-connected equipment (lower cost option)

Where do I find Charge Point location details?

Examples of Charge Point Maps Providers

The EV charging network

cenex

Charge Point Maps

On-line mapsEV satnav

https://www.zap-map.com/live

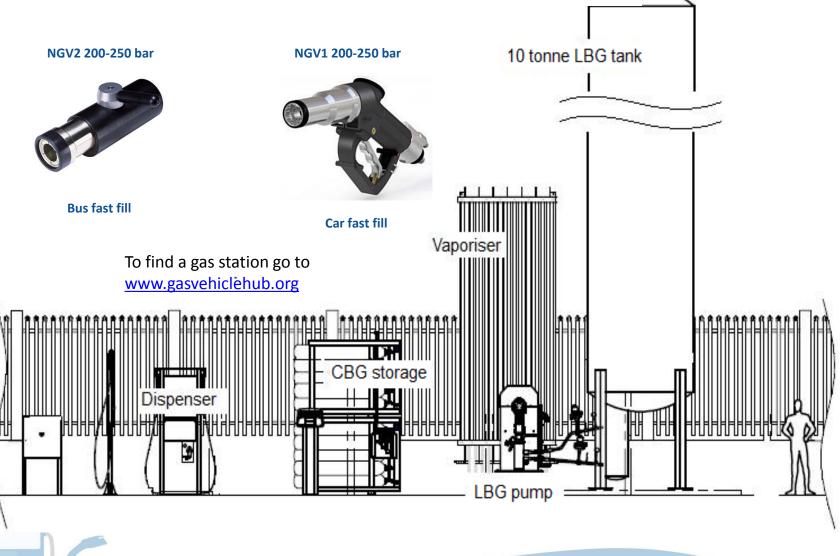
Hydrogen and Gas Fuelling Infrastructure

cenex

Hydrogen Fuelling

- UK hydrogen infrastructure deployment only emerging
- Typically for research purposes or for specific fleets
- Dispensed at either 350 or 700 bar gas
- 350 bar provided by TK16 nozzle

700 bar provided by TK17 nozzle



Natural Gas Fuelling

Some Novel Charge Point Technology and Equipment

cenex

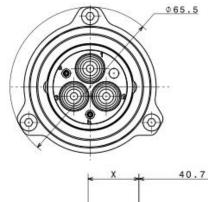
Tesla Supercharger Facility

- Three phase AC input
- 192 Amps per phase
- 125kW
- 310 Amps DC output
- 60% in 30min (170 miles)

- DC Only using Type 2 tethered plug
- Only Tesla compatible
- Large energy requirement
- Free to use
- 14 sites

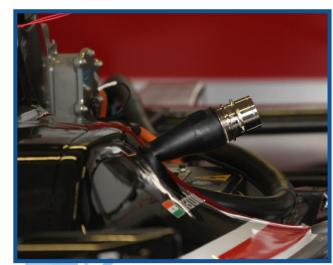
cenex

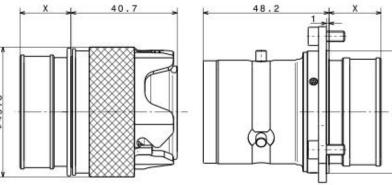
Formula E


- Spark_Renault SRT_01E
- 180kW peak electric power
- 0-62 mph 3 sec
- 5 speed paddle shift (fixed ratio)
- 888kg (inc. 320kg battery and 26kg electric motor)
- Carbon Fibre and Aluminium
- 32kWh (28kWh useable) Lithium-ion
- Charging 0-100% in 50 min
- Sound 80dB (F1 car is ~140dB; normal car is 70dB)
- Charge lasts 30 min (race is 1h with one vehicle change)


cenex

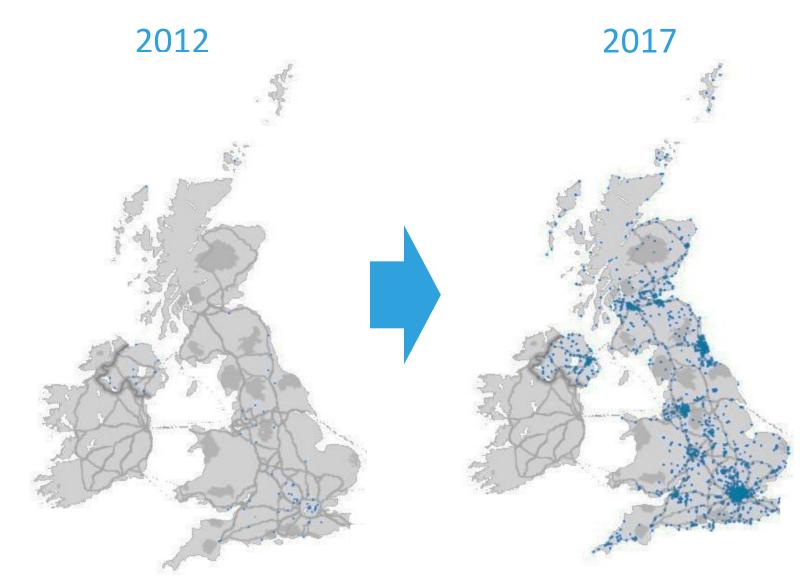
Formula E – Mobile DC Rapid Chargers

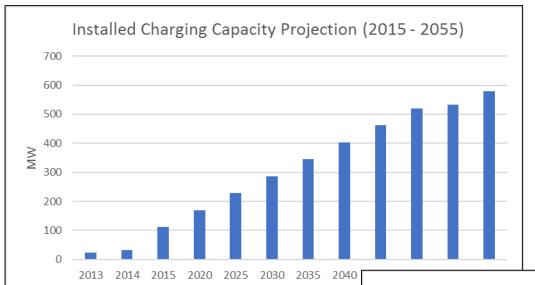




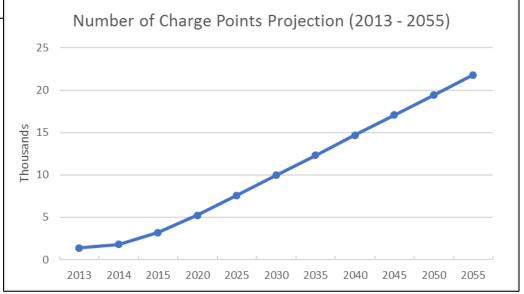
- Nominal 550-600 V DC charging
- 40 kW output
- Bespoke CER connector
- Meets EN61851-1 (general requirements for charging EVs)
- Developed by IES-Synergy for Williams battery

Vehicle Charging Infrastructure Market Development Forecast





EVSE Infrastructure Growth



EVSE Infrastructure Growth

- Rapid growth to support significant of plug-in electric vehicle uptake.
- Publicly accessible charge points: workplace, destination and retail.
- Private charge points: home chargers.

- By 2020, there would be more than 5,000 charge points installed in the UK.
- A charge point can have dual outlet and support two electric vehicles being charged simultaneously.

Conclusions

- Electric vehicles are available for most transport uses, including passenger cars and vans.
- Plug-in electric vehicle can be pure battery based, extended-range or hybrid electric vehicles.
- UK electric vehicle charging infrastructure is growing rapidly.
- Hydrogen and gas fuelling stations are less deployed compared to electric vehicle charging stations.
- Dual fuel CNG vehicles are common as Heavy Goods Vehicles and Refuse Collection Vehicles.

Are there any questions?

Discussion Activity

What infrastructure options could work for you?

Where could this infrastructure be installed?

What are the biggest barriers that you can see to implementing some, or all, of these technologies?

