

NWSRG WINTER SERVICE GUIDANCE AND FUTURE RESEARCH

APSE WINTER CONFERENCE 2018

CAROL VALENTINE NWSRG VICE CHAIR

THE NATIONAL WINTER SERVICE RESEARCH GROUP

- Membership based organisation
- Funded by members local and national highway authorities
- Supported by the Winter Service Industry
- Steering Group reports to UK Roads Board

Undergoing transformation ...

- New alliances: Met Office and IHE
- Seeking alternative funding arrangement
- Seeking to accelerate work progress in challenging circumstances
- New ambitions

DEVELOPMENT OF WINTER GUIDANCE

2016

2018 onwards

NUMBER SERVICE RESEARCH GROUP

PLANNED NEW GUIDANCE

- Continuing to use existing sections
- Completely rewritten in different style
- Shorter main text avoiding repetition
- Appendix containing additional supporting science background
- Professionally published with assistance from IHE
- Feedback from Appendix H has been considered and some tolerances increased where possible
- Simplified where possible in core text, but greater versatility given in appendix
- Key underlying science has not changed

STATUS OF REDRAFT

Section	Existing	New format
Treatment methods and Technologies	Published	For SG final approval
Salt Storage	Published	For SG final approval
Spreader Calibration	Published	For SG final approval
Treatments for extreme cold	Published	Text being finalised
Treatments for snow and ice	Published	Draft with members
De-icer types		Draft with members
Foreword and using the guide	Published	To be re-drafted
Salting spread rates	Published	Early draft of revised version
Planning		With working group
Treatment of Footways and Cycleways	Drafted	Being re-drafted with WG
Weather Forecasting and RWIS		Early draft from Met Office
Route Selection and Optimisation		With working group

waited regenal time in drive broom integration in the last 1011,2018

NATIONAL WINTER SERVICE RESEARCH GROUP

ROAD MAP TO IMPROVED RESILIENCE

I Risk-based determination of network to be treated

2	3	4	5	6
Consider	Manage salt	Calibrate	Determine	Improve
your	moisture	spreaders to	lowest	decision-
treatment	content	fine	spread rates	making
method:		increments		granularity
Dry		Good	Min RST	
Treated	Covered salt	performance	Wetness	Whole
Pre-wet	storage	at 1 gsm	Traffic	Domain
Brine		increments	Wind	Route

Improving resilience

TREATMENT METHODS – MATERIAL COMPOSITION

Improving resilience

TREATMENT METHODS – FACTORS TO CONSIDER

The ability to deliver the service over a wide range of conditions

Initial capital costs of equipment purchase

Economical and efficient spreading

Ability to effectively deliver the service in accordance with policy and plans Ability to accommodate equipment and plant (e.g. brine production)

Ongoing costs (e.g. storing and managing de-icers, maintenance)

Service resilience (e.g. salt stocks in harsh conditions)

Adverse impacts (e.g. vehicles, road assets and the environment)

TREATMENT METHODS – PERFORMANCE COMPARISON

2	Table 5.8.1 – Relative technology strengths and weaknesses for precautionary treatments							
Consider vour	Condition	Dry	Treated	Pre-wet	DLA			
Consider your	Marginal Temperatures - RST close to 0°C	Α	Α	Α	G			
treatment	Dry Roads– RST to -7°C	Α	G	G	G			
method:	Damp Roads – RST to -7°C	Α	G	G	G			
	G	G	Α	N to A ¹ & 2				
Dry	Extreme Cold – RST below -7°C (but above -15°C)	Α	Α	A to G ¹	N to G ¹			
Treated	Very light traffic after spreading – RST to -7°C	Α	A to G ²	A to G ²	G			
Pre-wet	High Wind Gusting over 20mph when spreading	Α	G	G	A to G ³			
Brine	High Wind Gusting over 20mph after spreading	Α	G	G	G			
	Hoar Frost and Freezing Fog	G	G	G	G			
	De-bonding Layer Before Snow	Α	G	G	G			
	G Good performance A Appropriate recommended		I	N Not				
Improving resilience								

SALT STORAGE

Manage salt moisture content

Covered salt storage

- Can only achieve lower spread rates by managing moisture content
- Tunnelling occurs over 4.5%
- Monitor moisture content
- Excessive change may require recalibration of spreader
- Avoid uncovered open salt stocks
- Moisture range now extended in some situations
- No lower limit for treated or pre-wet

UK rock salt, Marine Salt and imported rock salt(fines under 7.5%)	Dry salting	1.5 to 4%
UK rock salt, Marine Salt and imported rock salt (fines over 7.5%)	Dry salting	2 to 4%
UK rock salt	Pre-wetted	Less than 4%*
UK rock salt	Treated	Less than 4%*

NWSRG

SPREADER MANAGEMENT

Calibrate spreaders to fine increments

Good performance at 1 gsm increments

- Spreaders must be calibrated to ensure that they are spreading correctly
- Must measure output of salt and brine
- Must visually assess spread pattern
- Must calibrate to salt used
- Must monitor throughout season and recalibrate if necessary
- Result: GOOD FAIR
- Aim for 1 gsm increments to gain maximum benefit

POOR spreaders can use over 50% more salt than GOOD spreaders

SPREADER MANAGEMENT

Calibrate spreaders to fine increments

Good performance at 1 gsm increments

SPREAD RATES

Determine lowest spread rates

> Min RST Wetness Traffic Wind

- Science shows that very little salt is actually needed to mitigate ice - a gem that will be in the updated guidance!
- Higher spread rates are required to account for losses in the spreading process
- Less losses occur with treated, pre-wet and brine spreading

Amount of salt required on road surface and in solution to prevent ice forming (not the spread rate, as this is higher to account for losses)

Road Surface Temperature (°C)	Road Surface Wetness at Forecast Event			
	Damp	Wet		
То -1.0	1g/m ²	2g/m ²		
То -2.0	2g/m²	4g/m²		
То -5.0	5g/m²	10g/m²		
То -7.0	7g/m2	13g/m2		
То -10.0	9g/m2	18g/m2		

SPREAD RATES – REVISED EXAMPLE FOR DRY SALTING

Recommended Spread Rates – Dry Salting (g/m ²)					
Road Surface	Spreader Capability				
Temperature (RST)	Fair		Good		
when frost/ice is predicted	Dry/Damp Road	Wet Road	Dry/Damp Road	Wet Road	
At or above -1.0°C	8	8	8	8	
-1.1°C to -2.0°C	8	11	8	8	
-2.1°C to -3.0°C	9	17	8	13	
-3.1°C to -4.0°C	12	23	9	17	
-4.1°C to -5.0°C	14	28	11	21	
-5.1°C to -7.0°C	20	39	15	30	
-7.1°C to -10.0°C	27	54	20	40	
-10.1°C to -15.0°C	38	75	28	56	

 Traffic Flow : Tables assume Medium Traffic Normal Loss : Medium Traffic High Loss add 20% : 'Little/No' Traffic add 25% : High Traffic, use Trunk Road rates

• High Winds : prudent to increase rates when mean speed 20mph+

Determine lowest spread rates

> Min RST Wetness Traffic Wind

DECISION-MAKING & WEATHER FORECASTING

Improve decisionmaking granularity

> Whole Domain Route

- Weather will vary across an authority area depending on topography, coast etc
- Decision making by climatic domain will often reduce treatments
- Decision making by route can reduce treatments further
- Forecaster can now provide good domain and route-based forecasts
- Road weather stations can provide a means of monitoring the forecast against a forecast site graph

DECISION-MAKING & WEATHER FORECASTING

5 Improve decisionmaking granularity

> Whole Domain Route

- Determine threshold for decision making
- Determine how risk is being managed
- Determine how variations overnight are being monitored
- Met Office currently developing guidance based on scientific research which will be developed and discussed by NWSRG over the next few months
- Graphs opposite show Devon's treatment last winter and route variation using routebased forecasting

Improving resilience

ROAD MAP TO RESILIENCE – SUMMARY

Treated network

2 Treatment method

Improved resilience through assessing risk

Improved resilience through saving salt

3 Salt moisture content

Improved resilience through lower spread rates

4 Calibrate spreaders

Improved resilience through lower spread rates

5 Lowest spread rates

Improved resilience through lower spread rates

6 Improve decision-making

Improved resilience through less treatments

WHY DO RESEARCH?

DEVELOPING NEW KNOWLEDGE – RESIDUAL SALT

- Residual salt research:
- Top research priority from survey of NWSRG and wider winter community
- Research workshop to be held on 7th February at CIHT, London
- 'International knowledge exchange -Practitioners and Academia
- Share problems and ideas
- 'Creating a Roadmap to a practical solution'

THANKYOU

NATIONAL WINTER SERVICE RESEARCH GROUP