

Developments in Weather Forecasting

Met Office
© Crown copyright Met Office

Steven Wallace Joined Met Office in 2012

- Account Manger Road
- Account Manager Rail
- Integration specialist
- I.T Background
- Business improvement program co-ordinator

The forecasting process

© Crown copyright Met Office

Sourcing weather observations

Ground-based Weather instruments

Supercomputer

- IBM, 400 trillion calculations per second
- Equivalent to 400,000 PCs

IBM Supercomputer

- New Power 7 installed summer 2012
- Four times faster than previous computer
- Better climate and weather forecasts

Met Office Numerical Weather Prediction (NWP) Models

Previously 40km Upgrade 2010

Euro4

≽4.4km

<u>Global</u>

≥25km

Previously 12km Upgrade 2013

Previously 12km Upgrade 2006 4 KM Upgrade 2012

UKV ≽1.5km

© Crown copyright Met Office

Forecast Accuracy

- Decades of research have tried to find the best ways of representing atmospheric processes in a computer model
- Getting the starting conditions correct is critical
- Errors in the starting conditions are most likely where observations are sparse (e.g. over the Atlantic Ocean)
- The Met Office's Global forecast model takes 95 minutes to produce a forecast for the whole world out to 6 days
- It is run 4 times a day (00, 06, 12, 18 GMT)
- The forecast generally becomes less reliable the further ahead you look

Improving accuracy

The importance of a high resolution driving model

- Black line represents a road, the A835 in Scotland.
- Red colours represent increasing height, green then blue colours indicate low level terrain.

The Future

- Olympic Weymouth Model 300m resolution
- In 2014, Global model will be upgraded to between 15 -20km

300m model at Paralympics 2012 sailing Winds forecast (knots)

70

30

How does this feed into your forecast

Data flow

UKV

(UK Variable

Resolution:

NWP model)

UKPP

(UK

Post

Processed)

SSPS

(Site

Specific

Processing

System)

MORST

(Met Office

Road/Rail/Runway

Surface

Temperature

model)

3D Kalman

Filter

(A Statistical

correction

scheme)

Optimal Blend

(Lagging and blending)

MORST - Surface Water & Energy Balance

Meteorological Input to MORST

Solar radiation

Terrestrial radiation

Air temperature

Humidity / dew-point

Wind speed

Precipitation

UKV + UKPP + SSPS

© Crown copyright Met Office

Geographical (From GIS)

Shading

Sky-view factor

Landuse/turbulent mixing

Road Construction and **Traffic (GIS)**

Road construction

Traffic speed

Traffic volume

MORST

(Met Office Road Surface Temperature model)

Why use RBF?

Why use RBF?

Why use RBF?

Met Office

24 Hour Area Forecast for Orkney Islands Council

Valid from noon on Thursday 06 Dec 2012 to noon on Friday 07 Dec 2012

Forecaster Commentary: Assessment of RBF and Site-Specific Data

Good guidance given by the graphical forecast information today. Slight uncertainty regarding distribution of rain and showers.

	iness	

Hazard Summary					
Element Y/I		Conf	Details		
Ice Y		L	A low risk of icy patches if any roads dip below freezing overnight.		
Hoar Frost	N	н	Nil		
Snow	N	L	Nil		
Fog	N	н	See 24 hour weather summary below.		
Strong Wind	Y	н	W or SW 10, veering N this evening. Increasing 20 gusts 35 overnight.		
Rain	Y	н	See 24 hour weather summary below.		

Rain	>=2mm/hr for any hours over the 24 hours.
Strong Wind	>=25mph gusts.
Fog	Visibility less than 200 metres.

Minimum Temperature Summary				
	Temp (C)	Time Below Zero		
Air	PS01	N/A		
All Roads	MS01	2100-1000		
Urban Roads	PS01	N/A		

24 Hour Weather Summary

Showers affecting the area throughout the period, with some hail or sleet at times. A low risk of RSTs dipping below freezing overnight under any clear spells.

24 Hour RBF Forecast for Orkney Islands Council

Issued At 10:57 UTC. Thursday 06 December 2012 Valid from 12:00 UTC, Thursday 08 December 2012 to 12:00 UTC, Friday 07 December 2012

Forecaster Commentary: Assessment of RBF and Site-Specific Data

Good guidance given by the graphical forecast information today. Slight uncertainty regarding distribution of rain and

Domain	Route	Segment	Min RST	Time Below Zero	Ice	Hoar Frost	Rain	Snow
Orkney Islands	Forecast Text:	Showers affect A low risk of R						
		01	PS01.3	9 50.011 1100	Ling oven	igni unuci u	w v	x
		02	PS01.3	X	X	X	Y	X
		03	PS01.4	X	X X	X	Y	X
		04	PS01.4	X X	X X	×	Y	, x
	East Mainland	05	PS02.3	X	X	×	Y	X
		06	PS02.5	X	X	X	X	X
		07	PS01.9			X X	Y	
		08	PS01.4	X X	X X	X	Y	X X
		09	PS01.4	X	X	X	Y	X
		10	PS02.4				Y	
		11	PS02.2	X X	X X	X X	Y	X X
		12	PS02.4	×	X X	×	Y	×
		13	PS02.3				Y	
		13	PS02.3	X X	X X	X X	Y	X X
		15	PS02.6	X	X	X	Y	X
		01	PS02.6 PS01.2	X	X	X	Y	X
		02	PS01.2 PS01.1	X Y	X Y	X Y	Y	X Y
		02	PS00.5	X	X	X	Y	X
		03	PS00.5 PS00.1	X	X	X	Y	X
		05		21 - 08		X	Y	
		05	MS00.2		X		Y	X
		06	MS00.5 MS00.6	21 - 09	X	X	Y	X
				07 - 09	X	X		X
		08	ZERO	X	X	X	Y	X
		09	PS00.3	χ	X	X	X	X
	VVest Mainland	10	MS00.1	07 - 08	X	X	Х	X
		12	MS00.6	15 - 09	X	Y	Y	X
		12	MS01.0 MS00.8	14 - 09 15 - 09	X	Y	Y	X
		14			X	_	Y	X
			MS00.1	21 - 22	X	X	Y	X
		15	ZERO	X	X	Х		X
		10	MS00.2	17 - 18	X	Y	Y	X
		17	MS00.2	17 - 18	X	X	Х	X
		18	MS00.3	15 - 17	X	X	Y	X
		19	ZERO	X	X	X	Y	X
		01	PS01.6	X	X	X	Y	X
	Kirkwall	02	PS01.9	X	X	X	Y	X
		03	PS01.6	X	X	X	Y	X
	Stromness	04	PS02.0	X	X	X		X
		01	PS00.8	X	X	X	Y X	X
		02	PS00.7	X	X	X	Y	X
	Eday	01	PS02.8 PS02.6	X Y	X Y	X Y	Y	X Y
		02	PS02.6	X	X	X	Y	X
		03	PS02.6 PS02.8				Y	
	Fiotta	01	PS02.8 PS01.9	X X	X X	X X		X X
	FIULE	01	PS01.9 PS01.0	X	X	X	X X	X
		02	PS00.7	X	X	X	Y	X
	Roussy	02	PS01.2	X	X	X	Y	X
		04	PS01.4	X	X	X	Y	X
		05	PS01.4 PS01.6	X	X	X	Y	X
		01	PS01.6 PS01.1	X	X	X	Y	X
		02	PS01.1	X X	X	X	Y	X
		02	PS01.3	X	X	X	Y	X
		04	PS00.8	X Y	X Y	X Y	Y	X
		05	PS00.6	X	X	X	Y	X
		05	PS02.8	X	X	X	Y	X
		02	PS02.8	X	X	X	Y	X
	Sanday	02	PS02.8	X	X	X	Y	X
		03	PS03.2	X	X	X	Y	X
	Shapinsay	05	PS02.7	X	X	X	Y	X
		01	PS02.0	X	X	X	Y	X
		02	PS01.9	X	X	X	Y	X
	Stronger	01	P802.7	X	X	X	Y	X
	Stronsay	02	PS02.8	X	X	X	Y	X
		03	PS02.9	X	X	X	Y	X
	Total Comment	01	PS02.0	X	X	X		X
	VVestray	02	PS01.9	X	X	X	Y	X
		03	PS02.4	X	X	X	Y	X

Localised Variation Along a Route

High Resolution Data Sets from GIS

- Sky-view Factor
- Shading
- Traffic Flow
- Roughness Length

Route Optimisation

For Devon County Council

Objective: To deliver an effective winter service, with minimal reduction to service, whilst delivering a saving of £250,000 on a typical (not extreme) winter.

Step 1 – Operational efficiency.

How to deliver the same service for less >>> mileage, fuel, fleet, labour

Step 2 - Climatological Optimisation.

How to deliver the same for **even** less than above

>>> Selective Domain / route treatment.

Current and Future Work

- Ongoing accuracy improvements
- Improved quantification of the probability of high impact road hazards.
- Selective Spreading
- Dynamic route optimisation
- Improved capability for modelling Tunnels and Bridges