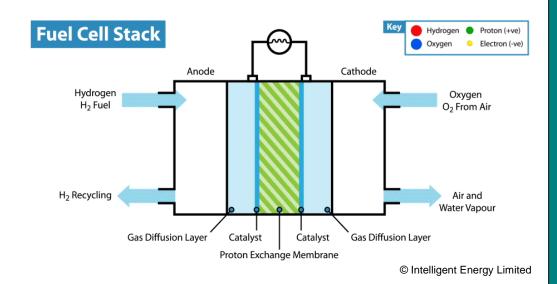
Smart Power via Fuel Cells: prospects in the UK

Tom Sperrey
Fuel Cell Systems Limited

Introduction & background

Context

- Stationary fuel cells
- Potential for public sector involvement
- Supply chain opportunities


Why fuel cells?

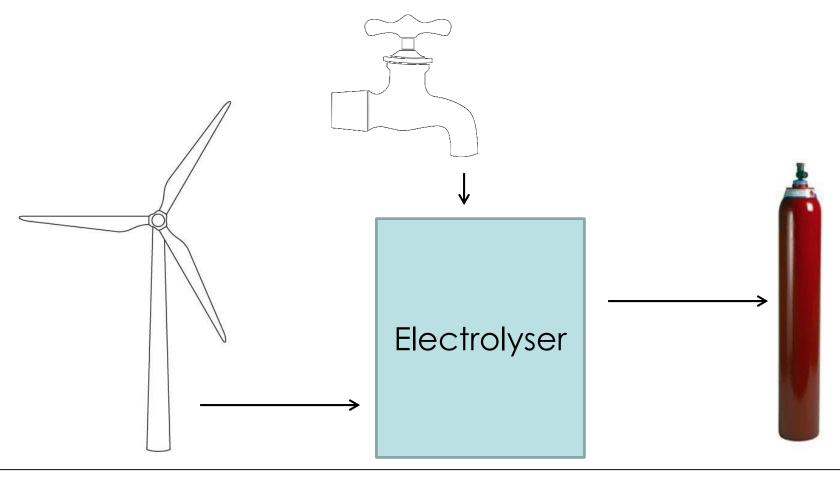
- Clean (cleaner)
- More efficient
- Potential for CHP
- Low maintenance
- Low noise
- Potential for low TCO

Fuels

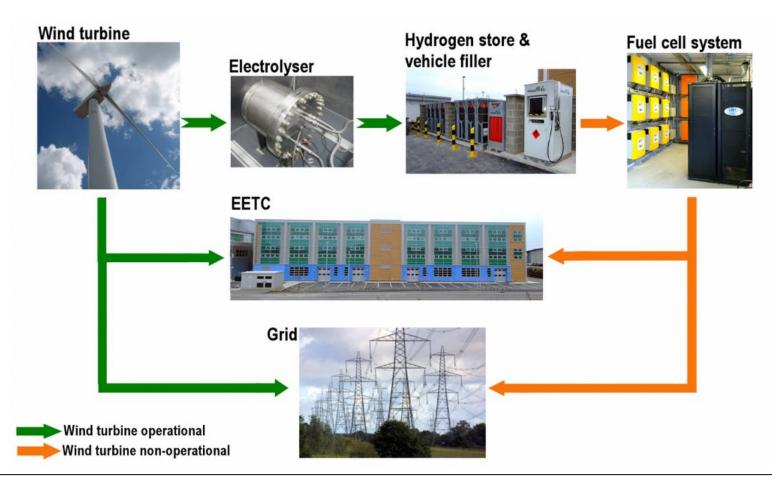
- H_2 + O = energy, heat and H_2 O
- Oxygen from the atmosphere
- But Hydrogen?

10kWh(e) output

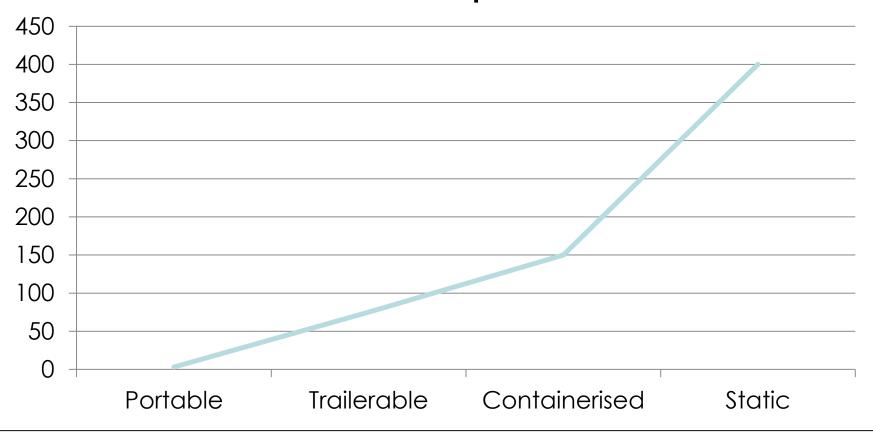
	H2	Propane	Methanol
Total Mass	75kg	8.8kg	8.6kg


Or Natural Gas

- The cleanest fossil fuel
- Storage and delivery network in place
- Options for 'greening'
- Output modulated easily
- The viable option for FCs over 1MW


Electrolysis

Fuel cells: current state of play www.fuelcellsystems.co.uk


Hydrogen Mini-Grid System Advanced Manufacturing Park, Rotherham

Fuel cell disposition vs. power

kWe output

Portable

100W, 8.3A at 12V, 10kWh

Trailer

Altergy, Inc.: 'Freedom Trailer' 5kW / 120 hours lighting trailer, Hydrogen-fuelled

360MW, Pyeongtaek City, Korea

Fuel cell supply chain

Components and subcomponents			
 Fuel store 	 Control systems 		
 Circulation 	 ePower conversion/regulation 		
• Stack	 tPower conversion/transport 		
 Fuel processing 	 Cabling 		
 Pipework & plumbing 	 Building works 		

Fuel cell supply chain

Fuel generation and supply

Renewables to gas:

- Increased wind and PV demand
- Tidal and Lagoon turbines
- Electrolysers
- Civil engineering

London

Public sector opportunities

- Leadership showcasing FC use
- Potential for Decentralised Energy (DE) via 'Licence Lite'
- Retaining value of power and environmental benefits that would otherwise be ceded to established suppliers through power purchase agreements
- Hedging exposure to rising /volatile energy supply costs
- Meeting Corporate Social Responsibility obligations.

e.g. London

Ability to generate revenue:

"The ground-breaking move will permit (the Mayor) to offer the capital's small electricity producers up to 30 per cent more for their excess energy than existing suppliers do, which he will then sell on to TfL, the Met and others at cost price*."

*GLA, 25 April 2014

Summary

- Clean air
- Improved efficiency local generation
- Scalable domestic to industrial
- Manufacturing opportunities
- Local generation opportunities

